Total Synthesis of Hypersampsone M.

J Am Chem Soc

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Published: July 2024

AI Article Synopsis

  • - The study presents the first complete synthesis of hypersampsone M, a type of compound known as homoadamantane polycyclic polyprenylated acylphloroglucinols (PPAPs).
  • - The synthesis starts from cyclohexenone and involves a crucial cyclopentene annulation and ring-expansion, leading to a rare hydrazulene compound.
  • - The methods outlined in this research may offer a general approach for creating similar homoadamantane PPAPs in the future.

Article Abstract

We report the first total synthesis of hypersampsone M, an archetypal member of the homoadamantane polycyclic polyprenylated acylphloroglucinols (PPAPs). Commencing from cyclohexenone, a key cyclopentene annulation followed by ring-expansion results in an elusive hydrazulene that undergoes a series of unexpected late-stage transformations, ultimately enabling completion of the synthesis. The route detailed herein represents a potentially general strategy for the synthesis of related homoadamantane PPAPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258692PMC
http://dx.doi.org/10.1021/jacs.4c07007DOI Listing

Publication Analysis

Top Keywords

total synthesis
8
synthesis hypersampsone
8
hypersampsone report
4
report total
4
hypersampsone archetypal
4
archetypal member
4
member homoadamantane
4
homoadamantane polycyclic
4
polycyclic polyprenylated
4
polyprenylated acylphloroglucinols
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!