Aims: Cefoperazone is commonly used off-label in the treatment of bacterial meningitis and sepsis in children, and the pharmacokinetic (PK) data are limited in this vulnerable population. The goal of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict pediatric cefoperazone exposure for rational dosing recommendations.
Methods: A cefoperazone PBPK model for adults was first constructed using Simcyp V22 simulator. Subsequently, the model was extended to children based on the built in age-dependent physiological parameters, while the drug characteristics remained unchanged. The verified pediatric PBPK model was then utilized to assess the rationality of the common dosing regimens for children at different age groups.
Results: Cefoperazone PBPK model included elimination via biliary excretion, glomerular filtration, and organic anion transporter 3 (OAT3)-mediated tubular secretion. 95.2% of the observed mean concentrations and 100% of the area under the plasma drug concentration-time curve (AUC) and peak concentration (C) in adults were within a twofold range of model mean predictions. Good predictive accuracy was also observed in children, including neonates. 50 mg/kg q12h cefoperazone demonstrated effective target attainment in virtual term neonates (<1 month) when the MIC was ≤1 mg/L, adhering to the stringent PK/PD target of 75% fT > MIC. 37.5 mg/kg q12h cefoperazone achieved the common 50% fT > MIC target for an MIC ≤ 0. 25 mg/L in virtual pediatric patients ranging from 1 month to 18 years of age.
Conclusions: A pediatric PBPK model was developed for cefoperazone, and it could serve as the basis for deriving rational dosing regimens in children.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bcp.16163 | DOI Listing |
J Pharm Sci
December 2024
Certara UK Ltd., Certara Predictive Technologies Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, United Kingdom. Electronic address:
Predicting steady-state volume of distribution (V) is a key component of pharmacokinetic predictions and often guided using preclinical data. However, when bottom-up prediction from physiologically-based pharmacokinetic (PBPK) models and observed V misalign in preclinical species, or predicted V from different models varies significantly, no consensus exists for selecting models or preclinical species to improve the prediction. Through systematic analysis of V prediction across rat, dog, monkey, and human, using common methods, a practical strategy for predicting human V, with or without integration of preclinical PK information is warranted.
View Article and Find Full Text PDFBiopharm Drug Dispos
December 2024
Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China.
Amphotericin B (AmB) has been a cornerstone in the treatment of invasive fungal infections for over 6 decades. Compared with conventional amphotericin B deoxycholate (AmB-DOC), liposomal amphotericin B has comparable efficacy but less nephrotoxicity. The main purpose of this study was to investigate the reason why liposomal amphotericin B has similar therapeutic effects but lower toxicity and the differences of distribution in humans between liposomal amphotericin B and AmB-DOC.
View Article and Find Full Text PDFClin Pharmacol Ther
December 2024
College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, South Korea.
Escitalopram is commonly prescribed for depressive and anxiety disorders in elderly patients, who often show variable drug responses and face higher risks of side effects due to age-related changes in organ function. The CYP2C19 polymorphism may further affect escitalopram pharmacokinetics in elderly patients, complicating dose optimization for this group. Previous pharmacogenetic studies examining the impact of CYP2C19 phenotype on escitalopram treatment outcomes have primarily focused on younger adults, leaving a gap in understanding its effects on the elderly.
View Article and Find Full Text PDFDrugs R D
December 2024
Galapagos SASU, Romainville, France.
Background And Objective: This study provides a physiologically based pharmacokinetic (PBPK) model-based analysis of the potential drug-drug interaction (DDI) between cyclosporin A (CsA), a breast cancer resistance protein transporter (BCRP) inhibitor, and methotrexate (MTX), a putative BCRP substrate.
Methods: PBPK models for CsA and MTX were built using open-source tools and published data for both model building and for model verification and validation. The MTX and CsA PBPK models were evaluated for their application in simulating BCRP-related DDIs.
CPT Pharmacometrics Syst Pharmacol
December 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA.
Ritonavir (RTV) is a potent CYP3A inhibitor that is widely used as a pharmacokinetic (PK) enhancer to increase exposure to select protease inhibitors. However, as a strong and complex perpetrator of CYP3A interactions, RTV can also enhance the exposure of other co-administered CYP3A substrates, potentially causing toxicity. Therefore, the prediction of drug-drug interactions (DDIs) and estimation of dosing requirements for concomitantly administered drugs is imperative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!