A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gut microbiota dysbiosis links chronic apical periodontitis to liver fibrosis in nonalcoholic fatty liver disease: Insights from a mouse model. | LitMetric

Gut microbiota dysbiosis links chronic apical periodontitis to liver fibrosis in nonalcoholic fatty liver disease: Insights from a mouse model.

Int Endod J

Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.

Published: November 2024

Aim: In this study, we investigated the systemic implications of chronic apical periodontitis (CAP). CAP may contribute to the nonalcoholic fatty liver disease (NAFLD) progression through the gut microbiota and its metabolites, which are related to the degree of fibrosis.

Methodology: Sixteen 7-week-old male apolipoprotein E knockout (apoE) mice were randomly divided into two groups: the CAP and Con groups. A CAP model was established by sealing the first- and second-maxillary molars with bacterium-containing cotton balls. Apical lesions were evaluated by micro-CT. Histological evaluations of NAFLD were performed using second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) assays. Additionally, we comprehensively analyzed the gut microbiota using 16S rRNA gene sequencing and explored metabolic profiles by liquid chromatography-mass spectrometry (LC-MS). Immunofluorescence analysis was used to examine the impact of CAP on tight junction proteins and mucin expression. Transcriptome assays have elucidated gene expression alterations in liver tissues.

Results: Micro-CT scans revealed an evident periapical bone loss in the CAP group, and the total collagen percentage was increased (Con, 0.0361 ± 0.00510%, CAP, 0.0589 ± 0.00731%, p < .05). 16S rRNA sequencing revealed reduced diversity and distinct taxonomic enrichment in the CAP group. Metabolomic assessments revealed that differentially enriched metabolites, including D-galactosamine, were enriched and that 16-hydroxyhexadecanoic acid and 3-methylindole were depleted in the CAP group. Immunofluorescence analyses revealed disruptions in tight junction proteins and mucin production, indicating intestinal barrier integrity disruption. Liver transcriptome analysis revealed upregulation of Lpin-1 expression in the CAP group.

Conclusion: This study provides comprehensive evidence of the systemic effects of CAP on liver fibrosis in NAFLD patients by elucidating alterations in the gut microbiota composition and metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1111/iej.14119DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
chronic apical
8
apical periodontitis
8
nonalcoholic fatty
8
fatty liver
8
liver disease
8
groups cap
8
cap
7
microbiota dysbiosis
4
dysbiosis links
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!