Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) AB type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co/Co redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµMcm), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm) at 1.45 V (vs RHE).

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202401273DOI Listing

Publication Analysis

Top Keywords

multi-walled carbon
8
hydrazine-assisted green
8
green hydrogen
8
hydrogen synthesis
8
high current
8
determination hydrazine
8
current density
8
hydrazine
5
electrocatalysis cobalt
4
cobalt porphyrin
4

Similar Publications

Performance and emissions of diesel engine combustion lubricated with Jatropha bio-lubricant and MWCNT additive.

Sci Rep

January 2025

Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Vegetable oil-based lubricants, modified through transesterification and epoxidation, present a sustainable alternative to mineral lubricants for transport and industrial use. This study evaluates epoxidized jatropha oil (EJA) enhanced with multi-walled carbon nanotubes (MWCNT) as a bio-lubricant for compression ignition engines. MWCNT, dispersed in EJA using an ultrasonic probe sonicator with Triton X-100 as a surfactant, was tested at nanoparticle concentrations from 0.

View Article and Find Full Text PDF

Light energy-driven carbonic anhydrase mediate CO sequestration system with variable-temperature adaptability.

Int J Biol Macromol

January 2025

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:

The escalating atmospheric CO₂ concentration urgently demands ecologically friendly mitigation strategies. Compared to alternative catalysts, carbonic anhydrase (CA) demonstrates exceptionally high catalytic efficiency in CO₂ hydration reactions. Nevertheless, traditional CA immobilization techniques exhibit peak enzymatic activity exclusively at optimal temperatures, consequently constraining their effective application across diverse environmental thermal conditions in industrial settings.

View Article and Find Full Text PDF

Present study was conducted to evaluate the detrimental impacts of exposure of Multi-walled Carbon Nanotubes (MWCNT-NP) on enzymatic activities and tissue structures in Swiss albino mice. The experimental groups of mice received MWCNT-NP for specific time period (seven or fourteen days). Two distinct doses of the MWCNT-NP solution were given orally: 0.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!