Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The increasing demand for electric vehicles necessitates the development of cost-effective, mass-producible, long-lasting, and highly conductive batteries. Making this kind of battery is exceedingly tricky. This study introduces an innovative fabrication technique utilizing a laser-induced graphene (LIG) approach on commercial Kapton film to create hexagonal pores. These pores form vertical conduction paths for electron and ion transportation during lithiation and delithiation, significantly enhancing conductivity. The nongraphitized portion of the Kapton film makes it a binder-less, free-standing electrode, providing mechanical stability. Various analytical techniques, including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Raman spectroscopy, and atomic force microscopy (AFM) are utilized to confirm the transformation of a 3D porous graphene sheet from a commercial Kapton film. Cross-sectional SEM images verify the vertical connections. The specific capacity of 581 mAh g is maintained until the end, with 99% coulombic efficiency at 0.1C. This simple manufacturing method paves the pathway for future LIG-based, cost-effective, lightweight, mass-producible, long-lasting, vertically conductive electrodes for lithium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202400189 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!