Humins, (side-)products of the acid-catalysed dehydration of carbohydrates, will be produced in substantial quantities with the development of industrial biorefining processes. Most structural knowledge about such humins is based on synthetic model humins prepared at lab-scale from typical carbohydrate(-derived) compounds. Here, we report the first extensive characterisation study of an industrial humin. The soluble humin was generated from pilot plant-scale methanolic cyclodehydration of D-fructose to 5-methoxymethyl-2-furfural (MMF), as part of the Avantium YXY® process to produce FDCA. Purification of the industrial humin followed by fractionation allowed isolation of a water-insoluble, high molecular weight fraction (WIPIH) and a water-soluble, low-to-middle molecular weight soluble fraction (WES). Characterisation by elemental analysis, thermogravimetry, IR and NMR spectroscopy and size exclusion chromatography provided a detailed picture of the humin structure in both fractions. Aided by a comprehensive NMR spectral library of furanic model compounds, we identified the main furanic building blocks and inter-unit linkages and propose a structure for this industrial humin sample. The WIPIH and WES fractions were found to be composed of furanic rings interconnected by short aliphatic chains containing a wide range of functionalities including alcohols, ethers, carboxylic acids, esters, aldehydes and ketones. The low level of crosslinking and high functional group content of the industrial humin differ from the more extensively studied, (highly over-)condensed synthetic model humins, towards which they can be considered intermediates. The structural and compositional insights into the nature of an actual industrial humin open up a broad spectrum of valorisation opportunities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216153 | PMC |
http://dx.doi.org/10.1039/d4gc00429a | DOI Listing |
Int J Biol Macromol
December 2024
School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China. Electronic address:
This study aimed to characterize and evaluate the effects of a novel polypeptide isolated from Inonotus hispidus (IH) against periodontitis. The polypeptides extracted and purified from the fruiting body of IH had a uniform molar mass, including 23 types of peptides. IH polypeptide (IHP) exerted antimicrobial activity against Porphyromonas gingivalis (P.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, 132101, China.
Environ Technol
September 2024
Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin, People's Republic of China.
Humins (HMs), the insoluble faction of humic substances (HSs), play a pivotal role in the bioremediation of pollutants by acting as electron shuttles that modulate the interactions between microorganisms and pollutants. This crucial function is intricately linked to their structural composition and electron transfer capabilities. However, the dynamics of the electron transfer capacity (ETC) of HM extracted during the composting process and its determinants have yet to be fully elucidated.
View Article and Find Full Text PDFGreen Chem
July 2024
Inorganic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
Humins, (side-)products of the acid-catalysed dehydration of carbohydrates, will be produced in substantial quantities with the development of industrial biorefining processes. Most structural knowledge about such humins is based on synthetic model humins prepared at lab-scale from typical carbohydrate(-derived) compounds. Here, we report the first extensive characterisation study of an industrial humin.
View Article and Find Full Text PDFChempluschem
December 2023
Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK.
5-hydroxymethylfurfural represents a key chemical in the drive towards a sustainable circular economy within the chemical industry. The final step in 5-hydroxymethylfurfural production is the acid catalysed dehydration of fructose, for which supported organoacids are excellent potential catalyst candidates. Here we report a range of solid acid catalysis based on sulphonic acid grafted onto different porous silica nanosphere architectures, as confirmed by TEM, N porosimetry, XPS and ATR-IR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!