In this research work, we have examined the influence of silver halide doping on the dielectric dispersion and AC conduction of elemental selenium. The in-depth investigation shows that when the dopant silver halides are incorporated, there are noticeable changes in the parent selenium's dielectric constant ('), dielectric loss (''), and AC conductivity ( ). When we frame the discussion of the obtained results with the relevant transport models, we found that in pure selenium and Se(AgI), conduction is primarily due to polaron hopping and follows the correlated barrier hopping (CBH) model. In contrast, Se(AgBr) predominantly exhibits non-overlapping small polaron tunneling (NSPT). Interestingly, Se(AgCl) demonstrates both NSPT and CBH conduction mechanisms, depending on the temperature range: NSPT is dominant between 303 K and 313 K, while CBH prevails from 318 K to 338 K. Additionally, our findings revealed the presence of both the Meyer-Neldel rule (MNR) and its reverse in the prepared silver halide chalcogenide alloys. The best optimization of dielectric constant and loss is observed for silver iodide as compared to silver chloride and silver bromide. Comparison with other silver-containing chalcogenide glasses indicates the better dielectric performance of the present silver halides containing selenium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217924PMC
http://dx.doi.org/10.1039/d4ra02999bDOI Listing

Publication Analysis

Top Keywords

silver halides
12
elemental selenium
8
silver
8
silver halide
8
dielectric constant
8
dielectric
5
exploring dielectric
4
conduction
4
dielectric conduction
4
conduction characteristics
4

Similar Publications

Hydroalkylation of terminal alkynes is a powerful approach to the synthesis of disubstituted alkenes. However, its application is largely unexplored in the synthesis of α,β-unsaturated carbonyls, which are common among synthetic intermediates and biologically active molecules. The thermodynamically less stable -isomers of activated alkenes have been particularly challenging to access because of their propensity for isomerization and the paucity of reliable -selective hydroalkylation methods.

View Article and Find Full Text PDF

ConspectusIn the past decade, single-atom skeletal editing, which involves the precise insertion, deletion, or exchange of single atoms in the core skeleton of a molecule, has emerged as a promising synthetic strategy for the rapid construction or diversification of complex molecules without laborious synthetic processes. Among them, carbene-initiated skeletal editing is particularly appealing due to the ready availability and diverse reactivities of carbene species. The initial endeavors to modify the core skeleton of heteroarenes through carbon-atom insertion could date back to 1881, when Ciamician and Denstedt described the conversion of pyrroles to pyridines by trapping haloform-derived free carbene.

View Article and Find Full Text PDF
Article Synopsis
  • Research on copper nanoclusters (Cu NCs) is growing due to their unique properties, prompting a need for an overview of their structural evolution and how ligand choices influence their geometry.
  • The article highlights the role of thiolate ligands in stabilizing Cu NCs but emphasizes that co-ligands like hydrides, phosphines, and halides are also vital for effective surface protection and maintaining structural integrity.
  • By analyzing the impact of different ligands on Cu NCs' structure and electronic properties, the article aims to inform the design of Cu NCs with specific functionalities, which could enhance applications in areas like optoelectronics, catalysis, and sensing.
View Article and Find Full Text PDF

Lead-free halide perovskite material has drawn fast-growing interest due to its superior solar-conversion efficiency and nontoxic nature. In this work, we have successfully fabricated cesium silver bismuth bromide (CsAgBiBr) quantum dots utilizing the hot injection method. The as-synthesized quantum dots were characterized by combined techniques, which showed remarkable visible-light photocatalytic activity for organic dyes and antibiotic degradation in ethanol.

View Article and Find Full Text PDF

Bidentate [C,N] and Tridentate [C,N,S] Palladium Cyclometallated Complexes as Pre-Catalysts in Cross-Coupling Reactions.

ChemistryOpen

November 2024

Departamento de Química Inorgánica, Universidad de Santiago de Compostela, E-, 15782, Santiago de Compostela, Spain.

Article Synopsis
  • The study focuses on the synthesis of palladacycles (both dinuclear and mononuclear) using halide-substituted Schiff base ligands, which involve C-H activation when treated with palladium(II) compounds.
  • Dinuclear complexes formed through metathesis with sodium chloride are converted into μ-chloride dinuclear complexes, which then react with phosphines to yield various phosphine derivatives.
  • The synthesized compounds were characterized using techniques like microanalysis, spectroscopy, and X-ray diffraction, and their efficacy as pre-catalysts in the Suzuki-Miyaura cross-coupling reaction was evaluated, highlighting the best-performing complexes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!