One-dimensional van der Waals (vdWs) heterostructures are celebrated for their exceptional thermal management capabilities, garnering significant research interest. Consequently, our research focused on the one-dimensional vdWs heterojunction comprising carbon nanotube half-wrapped in boron nitride nanotube (BNCNT), specifically their thermal rectification (TR) properties. We employed non-equilibrium molecular dynamics to explore the TR mechanism and assess the impacts of temperature, strain, and coupling strength on heat flux and TR ratio. Our findings reveal that the backward heat flux demonstrates greater atomic vibration instability, as indicated by mean square displacement (MSD), compared to forward heat flux. This instability leads to a higher concentration of localized phonons, thereby diminishing the backward heat flux and enhancing TR. Additionally, we utilized MSD to shed light on the negative differential thermal resistance phenomenon and the influence of stress on forward and backward heat fluxes. Remarkably, TR ratios reached 344% at 3% strain and 400% at -1% strain. Calculations of phonon density of states revealed a competitive mechanism between in-plane and out-of-plane phonons coupling in the inner carbon nanotube and an overlap degree of out-of-plane phonon spectra between the inner carbon nanotube and outer boron nitride nanotube. This accounts for the differing trends in forward and backward heat fluxes as coupling strength χ increases, with TR ratios exceeding 1000% at χ = 7.5. This study provides vital insights for advancing one-dimensional vdWs thermal rectifiers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c01171 | DOI Listing |
Sci Rep
January 2025
Nano-fabricated Energy Devices Lab, School of Electrical and Computer Eng., University of Tehran, 14395-515, Tehran, Iran.
Core-shell silicon/multiwall carbon nanotubes are one of the most promising anode candidates for further improvement of lithium-ion batteries. Sufficient accommodation for massive volume expansion of silicon during the lithiation process and preventing pulverization and delamination with easy fabrication processes are still critical issues for practical applications. In this study, core-shell silicon/MWCNTs anode materials were synthesized using a facile and controllable PECVD technique to realize aligned MWCNTs followed by a silicon sputtering step.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:
The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.
View Article and Find Full Text PDFFront Chem
January 2025
Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.
This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
In our previous work, we studied the thermodynamics of two cases of intercompartmental transport through a carbon nanotube: one involving water molecules and the other involving nonpolar molecules. Free energy calculations indicate that transporting water molecules from one compartment to another a narrow channel is impossible, whereas for nonpolar molecules, only approximately half can be transported. Therefore, the interaction strength between transported molecules significantly affects molecular transport.
View Article and Find Full Text PDFLaser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!