Background: Fish reproduction, development and growth are directly affected by temperature, investigating the regulatory mechanisms behind high temperature stress is helpful to construct a finer molecular network. In this study, we systematically analyzed the transcriptome and miRNA information of American shad (Alosa sapidissima) liver tissues at different cultivation temperatures of 24 ℃ (Low), 27 ℃ (Mid) and 30 ℃ (High) based on a high-throughput sequencing platform.

Results: The results showed that there were 1594 differentially expressed genes (DEGs) and 660 differentially expressed miRNAs (DEMs) in the LowLi vs. MidLi comparison group, 473 DEGs and 84 DEMs in the MidLi vs. HighLi group, 914 DEGs and 442 DEMs in the LowLi vs. HighLi group. These included some important genes and miRNAs such as calr, hsp90b1, hsp70, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p. The DEGs were mainly enriched in the protein folding, processing and export pathways of the endoplasmic reticulum; the target genes of the DEMs were mainly enriched in the focal adhesion pathway. Furthermore, the association analysis revealed that the key genes were mainly enriched in the metabolic pathway. Interestingly, we found a significant increase in the number of genes and miRNAs involved in the regulation of heat stress during the temperature change from 24 °C to 27 °C. In addition, we examined the tissue expression characteristics of some key genes and miRNAs by qPCR, and found that calr, hsp90b1 and dre-miR-125b-2-3p were significantly highly expressed in the liver at 27 ℃, while novel-m0481-5p, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p had the highest expression in the heart at 30℃. Finally, the quantitative expression trends of 10 randomly selected DEGs and 10 DEMs were consistent with the sequencing data, indicating the reliability of the results.

Conclusions: In summary, this study provides some fundamental data for subsequent in-depth research into the molecular regulatory mechanisms of A. sapidissima response to heat stress, and for the selective breeding of high temperature tolerant varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218383PMC
http://dx.doi.org/10.1186/s12864-024-10567-wDOI Listing

Publication Analysis

Top Keywords

genes mirnas
12
american shad
8
shad alosa
8
alosa sapidissima
8
regulatory mechanisms
8
high temperature
8
differentially expressed
8
dems lowli
8
degs dems
8
highli group
8

Similar Publications

Decorin-mediated dermal papilla cell-derived exosomes regulate hair follicle growth and development through miR-129-2-3p/SMAD3/TGF-β axis.

Int J Biol Macromol

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:

Decorin (DCN) is a member of the small leucine-rich proteoglycan family within the extracellular matrix, playing a role in the growth and development of hair follicle (HF). Exosomes serve as significant mediators of intercellular communication and are involved in the cyclic regeneration of HF. Exosomes derived from dermal papilla cells (DPC-Exos) are essential for the cycling and regrowth of HF.

View Article and Find Full Text PDF

Dynamic responses during early development of the sea urchin Strongylocentrotus intermedius to CO-driven ocean acidification: A microRNA-mRNA integrated analysis.

Mar Pollut Bull

January 2025

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China. Electronic address:

To explore the dynamic molecular responses to CO-driven ocean acidification (OA) during the early developmental stages of sea urchins, gametes of Strongylocentrotus intermedius were fertilized and developed to the four-armed larva stage in either natural seawater (as a control; pH = 7.99 ± 0.01) or acidified conditions (ΔpH = -0.

View Article and Find Full Text PDF

The role of Ancestral MicroRNAs in grass inflorescence development.

J Plant Physiol

December 2024

Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks.

View Article and Find Full Text PDF

Introduction: Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression.

View Article and Find Full Text PDF

Restoration of miR-200 expression suppresses proliferation and mobility of pancreatic cancer cell.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of General Surgery, Tianjin First Center Hospital, Tianji, 300384, China.

A number of various human malignancies have been associated with abnormal microRNAs (miRNA) expression. There are evidence that miR-200 operates as both tumor suppressor and an onco-miR in a variety of tumors. In this study, we evaluated the effects of miR-200 on the proliferation and migration of pancreatic cancer cells, as well as the underlying molecular pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!