Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/d41586-024-02130-0 | DOI Listing |
Chaos
January 2025
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China.
We demonstrate that fundamental nonlinear localized modes can exist in the Chen-Lee-Liu equation modified by several parity-time (PT) symmetric complex potentials. The explicit formula of analytical solitons is derived from the physically interesting Scarf-II potential, and families of spatial solitons in internal modes are numerically captured under the optical lattice potential. By the spectral analysis of linear stability, we observe that these bright solitons can remain stable across a broad scope of potential parameters, despite the breaking of the corresponding linear PT-symmetric phases.
View Article and Find Full Text PDFEur J Appl Physiol
January 2025
Laboratoire de Pharm-Ecologie Cardiovasculaire (EA 4278), Université d'Avignon, 33 Rue Louis Pasteur, 84000, Avignon, France.
Purpose: The present study examined the influence of endurance training on the morphological and functional heart adaptations in young athletes throughout a longitudinal 9-month follow-up period during the adolescent peak height velocity (PHV).
Methods: Thirty-six 13- to 15-year-old males (twenty-three triathletes and thirteen untrained peers) were evaluated before and after a 9-month period during PHV. Maximal oxygen uptake ( ) and power at were assessed during incremental cycling test.
Polymers (Basel)
December 2024
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
The effects of different doses (10-100 kGy) of electron beams on the molecular structure, microstructure, and thermoelectric properties of polypyrrole (PPy) under high-energy electron beam irradiation (10 MeV) were studied. The results showed that after electron beam irradiation, the conductivity of PPy increased slightly, but the Seebeck coefficient and power factor remained relatively stable. The structural analysis of FTIR, Raman spectroscopy, and X-ray diffraction indicated that the molecular structure of PPy was strongly stable, and its microstructure was only slightly affected by electron beam irradiation.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Controlled quantum teleportation is an important extension of multipartite quantum teleportation, which plays an indispensable role in building quantum networks. Compared with discrete variable counterparts, continuous variable controlled quantum teleportation can generate entanglement deterministically and exhibit higher superiority of the supervisor's authority. Here, we define a measure to quantify the control power in continuous variable controlled quantum teleportation via Greenberger-Horne-Zeilinger-type entangled coherent state channels.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei blvd. 98, Debrecen, 4012, Hungary.
This prospective cohort study is aimed to investigate circadian variations in corneal parameters, focusing on sleep-deprived subjects. Sixty-four healthy individuals (age range: 21-76 years) actively participated in this study, undergoing examinations at least five times within a 24-hour timeframe. The analysis encompassed keratometric parameters of the cornea's front (F) and back (B) surfaces, refractive power in flattest and steepest axes (K1, K2), astigmatism (Astig) and its axis (Axis), aspheric coefficient (Asph), corneal pachymetry values of thinnest corneal thickness (Pachy Min) and corneal thickness in the center of the pupil (Pachy Pupil), volume relative to the 3 and 10 mm corneal diagonal (Vol D3, Vol D10) and surface variance index (ISV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!