The creep characteristics and potential deformation patterns of gangue backfill material are crucial in backfill mining operations. This study utilizes crushed gangue from the Gangue Yard in Fuxin City as the research material. An in-house designed, large-scale, triaxial gangue compaction test system was used. Triaxial compaction creep tests were conducted on gangue materials with varying particle size distributions. Analysis was performed based on different particle sizes, stresses, and confinement pressures. The study investigates the creep characteristics of the gangue under different conditions and explores the underlying causes. It reveals the relationship between the creep deformation of gangue materials and the passage of time. Mathematical methods are applied to develop a triaxial compaction creep power law model for gangue backfill materials. Finally, the creep results are fitted using an empirical formula approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220082PMC
http://dx.doi.org/10.1038/s41598-024-66271-yDOI Listing

Publication Analysis

Top Keywords

creep characteristics
12
gangue
9
model gangue
8
gangue backfill
8
triaxial compaction
8
compaction creep
8
gangue materials
8
creep
6
bearing creep
4
characteristics constitutive
4

Similar Publications

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

The long-term safety and durability of anchor systems are the focus of slope maintenance management and sustainable operation. This study presents the observed temperature, humidity, and anchor bolt stress at varying depths from four-year remote real-time monitoring of the selected loess highway cut-slope. The potential correlation between slope hydrothermal environment and anchor stress is analyzed.

View Article and Find Full Text PDF

Phosphogypsum is the main industrial solid waste from wet process phosphoric acid production, which has significant potential for environmental sustainability and engineering applications when modified. In order to explore the mechanical properties of modified phosphogypsum (MG) in different loading environments, uniaxial compression tests were conducted at four loading rates: 0.03, 0.

View Article and Find Full Text PDF

Theoretical analysis of additional surrounding rock pressure in shallow buried bias tunnel.

Sci Rep

December 2024

China Construction Eighth Engineering Division Rail Transit Construction Co., Ltd, Nanjing, 210018, Jiangsu, China.

The existing calculation method for the surrounding rock pressure of shallow buried bias tunnel fails to account for the impact of the progressive failure characteristics of the surrounding rock and slope creep, thereby neglecting the additional pressure arising from slope creep. Therefore, the progressive instability failure mode of the surrounding rock of shallow buried bias tunnel was obtained by numerical simulation. Based on this, the theoretical analysis model of the additional pressure of shallow buried bias tunnel was established, and the calculation formula of the additional pressure was derived.

View Article and Find Full Text PDF

The study of dredged fill in Guangdong (GD), China, is of great significance for reclamation projects. Currently, there are relatively few studies on dredged fill in Guangdong, and there are many differences in the engineering characteristics of dredged fill foundations formed through land reclamation and natural foundations. In order to have a more comprehensive understanding of the physico-mechanical properties of blowing fill in the coastal area of GD and to understand the effect of its long-term creep row on the long-term settlement and deformation of buildings, the material properties, microstructure, elemental composition, triaxial shear properties, and triaxial creep properties of dredged fill in Guangdong were studied and analyzed through indoor geotechnical tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and conventional triaxial shear tests and triaxial creep tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!