This article examines the effects of different storage conditions on selected physicochemical properties of three types of agro-biomass pellets: sunflower husks, wheat straw and hemp hurds, and wood pellets. The tests were carried out in a climatic chamber, which allows simulation of real storage conditions, i.e. conditions with high air humidity and variable (±) ambient air temperatures. The results showed higher degradability of agro-biomass pellets compared to woody biomass. The pellets degraded to a less extent at varying ± temperatures than at high humidity (90% RH). After complete moisture saturation, durability decreases for agro-pellets by an average of 9%, while after freezing and defreezing for sunflower husk pellets and woody pellets durability decreases by 2%, and for hemp hurd pellets by 11%. In contrast, strength-by-dropping index for agro-pellets decreased by 20% after being in the environment (30 °C and 90%RH) and 15% under varying temperature conditions. No change in the energy parameters of all pellets in the dry matter was noted. On the other hand, an increase in the moisture content of pellets when they are stored under different environmental conditions results in a decrease in calorific value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220053 | PMC |
http://dx.doi.org/10.1038/s41598-024-66118-6 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.
View Article and Find Full Text PDFCarbon Balance Manag
January 2025
North Carolina State University, Raleigh, NC, USA.
Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon modeling frameworks are often developed and applied in a highly disciplinary manner, e.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.
Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.
J Am Chem Soc
January 2025
Department of Materials Science, Fudan University, Shanghai 200433, China.
Borohydrides, known for ultrahigh hydrogen density, are promising hydrogen storage materials but typically require high operating temperatures due to their strong thermodynamic stability. Here we introduce a novel light-induced destabilization mechanism for hydrogen storage reaction of borohydrides under ambient conditions photogenerated vacancies in LiH. These vacancies thermodynamically destabilize B-H bonds through the spontaneous "strong adsorption" of BH groups, which trigger an asymmetric redistribution of electrons, enabling hydrogen release at near room temperature, approximately 300 °C lower than the corresponding thermal process.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.
Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!