Asphaltene precipitation in oil reservoirs, well equipment, and pipelines reduces production, causing pore blockage, wettability changes, and decreased efficiency. Asphaltenes, with their unique chemical structure, self-assemble via acid-base interactions and hydrogen bonding. Nano-inhibitors prevent asphaltene aggregation at the nanoscale under reservoir conditions. This study investigates the effect of two surface-modified nanoparticles, silica, and calcium carbonate, as asphaltene inhibitors and oil production agents. The impacts of these nano-inhibitors on asphaltene content, onset point, wettability, surface tension, and oil recovery factor were determined to understand their mechanism on asphaltene precipitation and oil production. Results demonstrate that these nano-inhibitors can significantly postpone the onset point of asphaltene precipitation, with varying performance. Calcium carbonate nano-inhibitor exhibits better efficiency at low concentrations, suspending asphaltene molecules in crude oil. In contrast, silica nano-inhibitor performs better at high concentrations. Wettability alteration and IFT reduction tests reveal that each nano-inhibitor performs optimally at specific concentrations. Silica nano-inhibitors exhibit better colloidal stability and improve oil recovery more than calcium carbonate nano-inhibitors, with maximum oil recovery factors of 33% at 0.1 wt.% for silica and 25% at 0.01 wt.% for calcium carbonate nano-inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220011PMC
http://dx.doi.org/10.1038/s41598-024-65995-1DOI Listing

Publication Analysis

Top Keywords

asphaltene precipitation
16
oil recovery
16
calcium carbonate
16
precipitation oil
12
asphaltene
8
oil
8
nano-inhibitors asphaltene
8
oil production
8
onset point
8
nano-inhibitor performs
8

Similar Publications

Article Synopsis
  • The study investigates how enhanced oil recovery using carbon dioxide (CO) alters the properties of crude oil, specifically focusing on wax characteristics and viscosity changes.
  • As the treatment pressure increases from atmospheric levels to higher pressures (up to 25 MPa), notable changes in the composition of crude oil occur, including decreases in light hydrocarbons and increases in paraffins and wax.
  • Treatment with supercritical CO (scCO) leads to smaller wax crystal sizes and increased viscosity, with significant enhancements in gelation characteristics and wax precipitation temperatures, especially notable between pressures of 5 to 15 MPa.
View Article and Find Full Text PDF

Asphaltenes biodegradation from heavy crude oils by the yeast Yarrowia lipolytica.

Bioprocess Biosyst Eng

December 2024

Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha Do Fundão, Rio de Janeiro, 21941-909, Brazil.

Heavy crude oil reserves are characterized by their high viscosity and density, largely due to significant quantities of asphaltenes. The removal of asphaltene precipitates from oil industry installations is crucial, as they can contaminate catalysts and obstruct pipelines. Therefore, this study aimed to bio-transform heavy oil asphaltenes into smaller molecules using the yeast Yarrowia lipolytica, known for its ability to efficiently degrade hydrophobic substrates.

View Article and Find Full Text PDF

The pore throat structure and microheterogeneous wettability of tight sandstone reservoirs are complex, which leads to varying asphaltene precipitation locations, contents, and distributions in different pores during CO flooding. Clarifying the heterogeneous wettability of different pore throat structures and their effects on asphaltene precipitation and adsorption is crucial for improving CO displacement efficiency. A series of experiments were conducted in this study, including X-ray diffraction (XRD), cast thin section (CTS), field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion (HPMI), environmental scanning electron microscopy (E-SEM), nuclear magnetic resonance (NMR), and CO flooding experiments, to investigate the pore structure complexity of tight sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China.

View Article and Find Full Text PDF

Innovative xanthan gum-based nanocomposites for asphaltene precipitation prevention in shale and carbonate rocks.

Int J Biol Macromol

October 2024

Department of Advanced Calculations, Chemical, Petroleum, and Polymer Engineering Research Center, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran. Electronic address:

Asphaltene deposition in porous media creates many challenges in porous media. This study synthesizes ZnO/SiO/xanthan nanocomposites (NCs) to adsorb asphaltene and reduce its effect on the shale and carbonate rocks. NCs structure is analyzed using SEM, EDX, BET, and FTIR tests.

View Article and Find Full Text PDF

The micropore structure of tight sandstone affects the efficiency of CO displacement of crude oil. As the pressure changes, the oil displacement efficiency ( ) in segments with different pore radii changes, and the asphaltene precipitation in the pores causes alterations in the pore structure and wettability, which constrain . Ten samples of tight sandstone from the Yanchang Formation in the Ordos Basin were selected for this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!