Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify since novel therapeutic targets are often hard-to-drug proteins. We introduce FRASE-based hit-finding robot (FRASE-bot), to expedite drug discovery for unconventional therapeutic targets. FRASE-bot mines available 3D structures of ligand-protein complexes to create a database of FRAgments in Structural Environments (FRASE). The FRASE database can be screened to identify structural environments similar to those in the target protein and seed the target structure with relevant ligand fragments. A neural network model is used to retain fragments with the highest likelihood of being native binders. The seeded fragments then inform ultra-large-scale virtual screening of commercially available compounds. We apply FRASE-bot to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising drug target implicated in triple negative breast cancer. FRASE-based virtual screening identifies a small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depletion-insensitive cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219766 | PMC |
http://dx.doi.org/10.1038/s41467-024-49892-9 | DOI Listing |
J Gastrointest Cancer
January 2025
Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Radioresistance is a major challenge in the treatment of patients with colorectal cancer (CRC) and impairs the efficacy of radiotherapy. The PI3K/AKT/mTOR signaling pathway plays a critical role in CRC and contributes to the development of radioresistance. Accordingly, targeting this signaling pathway may be a promising strategy to improve oncotherapy.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment.
View Article and Find Full Text PDFAnn Hematol
January 2025
Service de Thérapie Cellulaire et d'Hématologie Clinique, CHU Estaing, Clermont-Ferrand, France.
The advent of BTK inhibitors has been transformative in the management of patients with chronic lymphocytic leukemia or other B-cell lymphoproliferative disorders. However, emergence of BTK or PLCG2 mutations lead to resistance to these compounds and are now a growing concern in clinical practice. Assessing BTK mutations is now becoming a priority to guide the therapeutic decision at further relapse.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Respiratory medicine, Taian 88 Hospital, Taian, 271000, People's Republic of China.
Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO).
View Article and Find Full Text PDFSci Rep
January 2025
Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!