Calcification and biomass production by planktonic marine organisms influences the global carbon cycle and fuels marine ecosystems. The major calcifying plankton group coccolithophores are highly diverse, comprising ca. 250-300 extant species. However, coccolithophore size (a key functional trait) and degree of calcification are poorly quantified, as most of our understanding of this group comes from a small number of species. We generated a novel reference dataset of coccolithophore morphological traits, including cell-specific data for coccosphere and cell size, coccolith size, number of coccoliths per cell, and cellular calcite content. This dataset includes observations from 1074 individual cells and represents 61 species from 25 genera spanning equatorial to temperate coccolithophore populations that were sampled during the Atlantic Meridional Transect (AMT) 14 cruise in 2004. This unique dataset can be used to explore relationships between morphological traits (cell size and cell calcite) and environmental conditions, investigate species-specific and community contributions to pelagic carbonate production, export and plankton biomass, and inform and validate coccolithophore representation in marine ecosystem and biogeochemical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220069PMC
http://dx.doi.org/10.1038/s41597-024-03544-1DOI Listing

Publication Analysis

Top Keywords

morphological traits
8
cell size
8
cellular morphological
4
morphological trait
4
dataset
4
trait dataset
4
dataset extant
4
extant coccolithophores
4
coccolithophores atlantic
4
atlantic ocean
4

Similar Publications

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

Corner's Rules and Their Linkages With Twig Functions and Tree Productivity in Simple- and Compound-Leaved Tree Species.

Plant Cell Environ

December 2024

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.

Corner's rules are well known in describing inter-specific scaling relationships for plant organ size-related traits, from species with thick terminal stems, large leaves, and sparsely branched twigs to species with opposite traits; however, the implications of organ size on physiological functions and growth performance of trees remain unclear. Moreover, whether Corner's rules spectra differ between tree species with simple and compound leaves is not known. Here, we measured key twig morphological traits, physiological characteristics, and radial growth rates of 27 simple- and 6 compound-leaved tree species in a common garden in Northeast China.

View Article and Find Full Text PDF

Transcriptome analysis reveals the genetic basis underlying the formation and seasonal changes of nuptial pads in Rana chensinensis.

BMC Genomics

December 2024

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.

Background: Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood.

Results: To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R.

View Article and Find Full Text PDF

Introduction: Orchids are renowned for their intricate floral structures, where sepals and petals contribute significantly to ornamental value and pollinator attraction. In Section , the distinctive curvature of these floral organs enhances both aesthetic appeal and pollination efficiency. However, the molecular and cellular mechanisms underlying this trait remain poorly understood.

View Article and Find Full Text PDF

Zea mays L. (Maize) is one of the most crucial world's crops, for their nutritional values, however, the water scarcity and consequent soil salinization are the major challenges that limit the growth and productivity of this plant, particularly in the semi-arid regions in Egypt. Recently, biopriming has been recognized as one of the most efficient natural-ecofriendly approaches to mitigate the abiotic salt stress on plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!