Deep neural networks have achieved remarkable success in various fields. However, training an effective deep neural network still poses challenges. This paper aims to propose a method to optimize the training effectiveness of deep neural networks, with the goal of improving their performance. Firstly, based on the observation that parameters (weights and bias) of deep neural network change in certain rules during training process, the potential of parameters prediction for improving training efficiency is discovered. Secondly, the potential of parameters prediction to improve the performance of deep neural network by noise injection introduced by prediction errors is revealed. And then, considering the limitations comprehensively, a deep neural network Parameters Linear Prediction method is exploit. Finally, performance and hyperparameter sensitivity validations are carried out on some representative backbones. Experimental results show that by employing proposed Parameters Linear Prediction method, as opposed to SGD, has led to an approximate 1% increase in accuracy for optimal model, along with a reduction of about 0.01 in top-1/top-5 error. Moreover, it also exhibits stable performance under various hyperparameter settings, shown the effectiveness of the proposed method and validated its capacity in enhancing network's training efficiency and performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219985PMC
http://dx.doi.org/10.1038/s41598-024-65691-0DOI Listing

Publication Analysis

Top Keywords

deep neural
28
neural network
20
training efficiency
12
linear prediction
12
efficiency performance
8
neural networks
8
potential parameters
8
parameters prediction
8
parameters linear
8
prediction method
8

Similar Publications

GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery.

Mol Divers

January 2025

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.

Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.

View Article and Find Full Text PDF

Assessing the efficiency of pixel-based and object-based image classification using deep learning in an agricultural Mediterranean plain.

Environ Monit Assess

January 2025

Department of Landscape Architecture, Remote Sensing and GIS Laboratory, University of Cukurova, Adana, 01330, Turkey.

Recent advancements in satellite technology have greatly expanded data acquisition capabilities, making satellite imagery more accessible. Despite these strides, unlocking the full potential of satellite images necessitates efficient interpretation. Image classification, a widely adopted for extracting valuable information, has seen a surge in the application of deep learning methodologies due to their effectiveness.

View Article and Find Full Text PDF

Introduction: A large number of middle-aged and elderly patients have an insufficient understanding of osteoporosis and its harm. This study aimed to establish and validate a convolutional neural network (CNN) model based on unenhanced chest computed tomography (CT) images of the vertebral body and skeletal muscle for opportunistic screening in patients with osteoporosis.

Materials And Methods: Our team retrospectively collected clinical information from participants who underwent unenhanced chest CT and dual-energy X-ray absorptiometry (DXA) examinations between January 1, 2022, and December 31, 2022, at four hospitals.

View Article and Find Full Text PDF

Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.

View Article and Find Full Text PDF

This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!