Non-invasive and noise-robust light focusing using confocal wavefront shaping.

Nat Commun

Department of Electrical and Computer Engineering, Technion, Haifa, Israel.

Published: July 2024

Wavefront-shaping is a promising approach for imaging fluorescent targets deep inside scattering tissue despite strong aberrations. It enables focusing an incoming illumination into a single spot inside tissue, as well as correcting the outgoing light scattered from the tissue. Previously, wavefront shaping modulations have been successively estimated using feedback from strong fluorescent beads, which have been manually added to a sample. However, such algorithms do not generalize to neurons whose emission is orders of magnitude weaker. We suggest a wavefront shaping approach that works with a confocal modulation of both the illumination and imaging arms. Since the aberrations are corrected in the optics before the detector, the low photon budget is directed into a single sensor spot and detected with high signal-noise ratio. We derive a score function for modulation evaluation from mathematical principles, and successfully use it to image fluorescence neurons, despite scattering through thick tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219997PMC
http://dx.doi.org/10.1038/s41467-024-49697-wDOI Listing

Publication Analysis

Top Keywords

wavefront shaping
12
non-invasive noise-robust
4
noise-robust light
4
light focusing
4
focusing confocal
4
confocal wavefront
4
shaping wavefront-shaping
4
wavefront-shaping promising
4
promising approach
4
approach imaging
4

Similar Publications

We present the first, to our knowledge, metasurface holographic display method with exceptional fidelity and minimal edge noise, based on highly uniform flat-top light generated by a digital micromirror device (DMD). Based on the error-diffusion algorithm and iterative refinement process, the amplitude distribution of the initial Gaussian light was dynamically closed-loop modulated, and the standard difference of the intensity of the 3 mm diameter center flat-top beam was reduced to less than 3.4%.

View Article and Find Full Text PDF

We present a Fourier neural operator (FNO)-based surrogate solver for the efficient optimization of wavefronts in tunable metasurface controls. Existing methods, including the Gerchberg-Saxton algorithm and the adjoint optimization, are often computationally demanding due to their iterative processes, which require numerical simulations at each step. Our surrogate solver overcomes this limitation by providing highly accurate gradient estimations with respect to changes in tunable meta-atoms without the need for direct simulations.

View Article and Find Full Text PDF

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

Hyperspectral imaging (HSI) systems acquire images with spectral information over a wide range of wavelengths but are often affected by chromatic and other optical aberrations that degrade image quality. Deconvolution algorithms can improve the spatial resolution of HSI systems, yet retrieving the point spread function (PSF) is a crucial and challenging step. To address this challenge, we have developed a method for PSF estimation in HSI systems based on computed wavefronts.

View Article and Find Full Text PDF

Digital Feedback Loop in Paraxial Fluids of Light: A Gate to New Phenomena in Analog Physical Simulations.

Phys Rev Lett

December 2024

Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!