Similar Publications

Unlabelled: While visual working memory (WM) is strongly associated with reductions in occipitoparietal 8-12 Hz alpha power, the role of 4-7 Hz frontal midline theta power is less clear, with both increases and decreases widely reported. Here, we test the hypothesis that this theta paradox can be explained by non-oscillatory, aperiodic neural activity dynamics. Because traditional time-frequency analyses of electroencephalopgraphy (EEG) data conflate oscillations and aperiodic activity, event-related changes in aperiodic activity can manifest as task-related changes in apparent oscillations, even when none are present.

View Article and Find Full Text PDF

Enhancing the performance of SSVEP-based BCIs by combining task-related component analysis and deep neural network.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.

Steady-State Visually Evoked Potential (SSVEP) signals can be decoded by either a traditional machine learning algorithm or a deep learning network. Combining the two methods is expected to enhance the performance of an SSVEP-based brain-computer interface (BCI) by exploiting their advantages. However, an efficient strategy for integrating the two methods has not yet been established.

View Article and Find Full Text PDF

A hybrid network using transformer with modified locally linear embedding and sliding window convolution for EEG decoding.

J Neural Eng

January 2025

West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.

. Brain-computer interface(BCI) is leveraged by artificial intelligence in EEG signal decoding, which makes it possible to become a new means of human-machine interaction. However, the performance of current EEG decoding methods is still insufficient for clinical applications because of inadequate EEG information extraction and limited computational resources in hospitals.

View Article and Find Full Text PDF

Recent neuroimaging studies demonstrate a heterogeneity of timescales prevalent in the brain's ongoing spontaneous activity, labeled intrinsic neural timescales (INT). At the same time, neural timescales also reflect stimulus- or task-related activity. The relationship of the INT during the brain's spontaneous activity with their involvement in task states including behavior remains unclear.

View Article and Find Full Text PDF

The EEG theta band displays distinct roles in resting and task states. Low resting theta and transient increases in frontal-midline (fm) theta power during tasks are associated with better cognitive control, such as error monitoring. ADHD can disrupt this balance, resulting in high resting theta linked to drowsiness and low fm-theta activity associated with reduced cognitive abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!