The honey bee Apis mellifera plays a significant role as a pollinator of native and cultivated plants, by increasing the productivity of several cultures, preserving the flora, and producing forest seeds. However, bee populations are declining worldwide, including A. mellifera, due to Colony Collapse Disorder, mainly resulting from the constant use of pesticides in the crops. Teflubenzuron is a physiological insecticide that belongs to the benzoylurea group, which inhibits chitin synthesis, the main component of the insect integument classified as safe for non-target insects, including bees. However, its effect on non-target organs of insects remains unknown. The midgut is the main organ of the digestive tract, which works in digestion and absorption and may be exposed to pesticides that contaminate food resources. The present work aimed to verify if the insecticide teflubenzuron is toxic and has histopathological effects on the midgut of A. mellifera adult workers. Workers exposed orally and chronically to the field-realistic concentration of teflubenzuron present 81.54% mortality. The epithelium of the midgut of these bees presents high vacuolization, spherocrystals, cell fragments released to the organ lumen, apocrine secretion, nuclear pyknosis, loss of cell-cell contact, and damage to regenerative cell nests and to the peritrophic matrix. These results indicate that the chitin synthesis-inhibiting insecticide teflubenzuron is toxic to A. mellifera after chronic oral exposure, at realistic field concentration, although it is classified as non-toxic to adult and non-target insects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34066-3 | DOI Listing |
Environ Sci Pollut Res Int
July 2024
Departamento de Biologia Geral, Instituto de Biotecnologia Aplicada À Agropecuária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs S/N - Campus Universitário, Viçosa, Minas Gerais, 36570 000, Brazil.
The honey bee Apis mellifera plays a significant role as a pollinator of native and cultivated plants, by increasing the productivity of several cultures, preserving the flora, and producing forest seeds. However, bee populations are declining worldwide, including A. mellifera, due to Colony Collapse Disorder, mainly resulting from the constant use of pesticides in the crops.
View Article and Find Full Text PDFChemosphere
August 2024
Aarhus University, Department of Ecoscience, Section for Terrestrial Ecology, C.F. Møllers Allé 4, Building 1120, 8000, Aarhus C, Denmark.
Chitin synthesis inhibitors (CSIs) are commonly used insecticides compromising cuticle formation and structure in arthropods. Arthropods rely on intact cuticles to maintain water balance and cellular homeostasis to survive in different weather conditions. We hypothesized that physiological impacts of CSIs may make arthropods more vulnerable to harsh environmental conditions, such as extreme heat, cold or drought.
View Article and Find Full Text PDFPest Manag Sci
October 2024
Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil.
Background: Chrysodeixis includens (Walker) and Rachiplusia nu (Guenée) are major Plusiinae pests of soybean in the Southern Cone region of South America. In recent decades, C. includens was the main defoliator of soybean in Brazil, but from 2021 onwards, R.
View Article and Find Full Text PDFEnviron Toxicol Chem
May 2024
Section for Terrestrial Ecology, Department of Ecoscience, Aarhus University, Aarhus C, Denmark.
Current standard toxicity tests on nontarget soil invertebrates mainly focus on the endpoints survival and reproduction. Such results are likely insufficient to predict effects at higher organizational levels, for example, the population level. We assessed the effects of exposure to the pesticide teflubenzuron on the collembolan Folsomia candida, by performing a full life-cycle experiment exposing single individuals via contaminated food (uncontaminated control and 0.
View Article and Find Full Text PDFEnviron Toxicol Chem
May 2024
Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
The integration of untargeted lipidomics approaches in ecotoxicology has emerged as a strategy to enhance the comprehensiveness of environmental risk assessment. Although current toxicity tests with soil microarthropods focus on species performance, that is, growth, reproduction, and survival, understanding the mechanisms of toxicity across all levels of biological organization, from molecule to community is essential for informed decision-making. Our study focused on the impacts of sublethal concentrations of the insecticide teflubenzuron on the springtail Folsomia candida.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!