Background: Life-threatening, space-occupying mass effect due to cerebral edema and/or hemorrhagic transformation is an early complication of patients with middle cerebral artery stroke. Little is known about longitudinal trajectories of laboratory and vital signs leading up to radiographic and clinical deterioration related to this mass effect.

Methods: We curated a retrospective data set of 635 patients with large middle cerebral artery stroke totaling 95,463 data points for 10 longitudinal covariates and 40 time-independent covariates. We assessed trajectories of the 10 longitudinal variables during the 72 h preceding three outcomes representative of life-threatening mass effect: midline shift ≥ 5 mm, pineal gland shift (PGS) > 4 mm, and decompressive hemicraniectomy (DHC). We used a "backward-looking" trajectory approach. Patients were aligned based on outcome occurrence time and the trajectory of each variable was assessed before that outcome by accounting for cases and noncases, adjusting for confounders. We evaluated longitudinal trajectories with Cox proportional time-dependent regression.

Results: Of 635 patients, 49.0% were female, and the mean age was 69 years. Thirty five percent of patients had midline shift ≥ 5 mm, 24.3% of patients had PGS > 4 mm, and 10.7% of patients underwent DHC. Backward-looking trajectories showed mild increases in white blood cell count (10-11 K/UL within 72 h), temperature (up to half a degree within 24 h), and sodium levels (1-3 mEq/L within 24 h) before the three outcomes of interest. We also observed a decrease in heart rate (75-65 beats per minute) 24 h before DHC. We found a significant association between increased white blood cell count with PGS > 4 mm (hazard ratio 1.05, p value 0.007).

Conclusions: Longitudinal profiling adjusted for confounders demonstrated that white blood cell count, temperature, and sodium levels appear to increase before radiographic and clinical indicators of space-occupying mass effect. These findings will inform the development of multivariable dynamic risk models to aid prediction of life-threatening, space-occupying mass effect.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12028-024-02036-9DOI Listing

Publication Analysis

Top Keywords

middle cerebral
12
cerebral artery
12
artery stroke
12
space-occupying mass
12
white blood
12
blood cell
12
cell count
12
life-threatening mass
8
large middle
8
life-threatening space-occupying
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!