A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Plasma metabolomic and lipidomic profiles accurately classify mothers of children with congenital heart disease: an observational study. | LitMetric

Introduction: Congenital heart disease (CHD) is the most common congenital anomaly, representing a significant global disease burden. Limitations exist in our understanding of aetiology, diagnostic methodology and screening, with metabolomics offering promise in addressing these.

Objective: To evaluate maternal metabolomics and lipidomics in prediction and risk factor identification for childhood CHD.

Methods: We performed an observational study in mothers of children with CHD following pregnancy, using untargeted plasma metabolomics and lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). 190 cases (157 mothers of children with structural CHD (sCHD); 33 mothers of children with genetic CHD (gCHD)) from the children OMACp cohort and 162 controls from the ALSPAC cohort were analysed. CHD diagnoses were stratified by severity and clinical classifications. Univariate, exploratory and supervised chemometric methods were used to identify metabolites and lipids distinguishing cases and controls, alongside predictive modelling.

Results: 499 metabolites and lipids were annotated and used to build PLS-DA and SO-CovSel-LDA predictive models to accurately distinguish sCHD and control groups. The best performing model had an sCHD test set mean accuracy of 94.74% (sCHD test group sensitivity 93.33%; specificity 96.00%) utilising only 11 analytes. Similar test performances were seen for gCHD. Across best performing models, 37 analytes contributed to performance including amino acids, lipids, and nucleotides.

Conclusions: Here, maternal metabolomic and lipidomic analysis has facilitated the development of sensitive risk prediction models classifying mothers of children with CHD. Metabolites and lipids identified offer promise for maternal risk factor profiling, and understanding of CHD pathogenesis in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219374PMC
http://dx.doi.org/10.1007/s11306-024-02129-8DOI Listing

Publication Analysis

Top Keywords

mothers children
20
metabolites lipids
12
metabolomic lipidomic
8
congenital heart
8
heart disease
8
observational study
8
metabolomics lipidomics
8
risk factor
8
children chd
8
best performing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!