Rationale And Objective: Stroke-associated pneumonia (SAP) often appears as a complication following intracerebral hemorrhage (ICH), leading to poor prognosis and increased mortality rates. Previous studies have typically developed prediction models based on clinical data alone, without considering that ICH patients often undergo CT scans immediately upon admission. As a result, these models are subjective and lack real-time applicability, with low accuracy that does not meet clinical needs. Therefore, there is an urgent need for a quick and reliable model to timely predict SAP.

Methods: In this retrospective study, we developed an image-based model (DeepSAP) using brain CT scans from 244 ICH patients to classify the presence and severity of SAP. First, DeepSAP employs MRI-template-based image registration technology to eliminate structural differences between samples, achieving statistical quantification and spatial standardization of cerebral hemorrhage. Subsequently, the processed images and filtered clinical data were simultaneously input into a deep-learning neural network for training and analysis. The model was tested on a test set to evaluate diagnostic performance, including accuracy, specificity, and sensitivity.

Results: Brain CT scans from 244 ICH patients (mean age, 60.24; 66 female) were divided into a training set (n = 170) and a test set (n = 74). The cohort included 143 SAP patients, accounting for 58.6% of the total, with 66 cases classified as moderate or above, representing 27% of the total. Experimental results showed an AUC of 0.93, an accuracy of 0.84, a sensitivity of 0.79, and a precision of 0.95 for classifying the presence of SAP. In comparison, the model relying solely on clinical data showed an AUC of only 0.76, while the radiomics method had an AUC of 0.74. Additionally, DeepSAP achieved an optimal AUC of 0.84 for the SAP grading task.

Conclusion: DeepSAP's accuracy in predicting SAP stems from its spatial normalization and statistical quantification of the ICH region. DeepSAP is expected to be an effective tool for predicting and grading SAP in clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.06.025DOI Listing

Publication Analysis

Top Keywords

clinical data
12
ich patients
12
stroke-associated pneumonia
8
intracerebral hemorrhage
8
brain scans
8
scans 244
8
244 ich
8
statistical quantification
8
test set
8
sap
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!