Though their small size, ponds play a disproportionately crucial role in eliminating nitrogen (N) transporting to downstream freshwaters. As significant water infrastructures, ponds are non-sustainable due to loss of storage capacity resulting from sedimentation. However, the effects of pond sedimentation on N removal is widely neglected in landscape N processing. The NUFER (Nutrient flows in Food chains, Environment and Resources use) model was employed to estimate N runoff from 1960 to 2018. We reconstructed the dynamic of number and storing capacity of about 14 million ponds due to construction and sedimentation from 1960 to 2018, projecting these trends into the year 2060. Our approach incorporated first-order kinetic reactions, including water residence time (HRT), to estimate N removal of ponds, utilizing data 6 monitoring ponds and 81 ponds from literature studies. Our analysis reveals a fourteen-fold increase in N runoff over the past six decades, rising from 0.8 Mt N in 1960 to 11.4 Mt N in 2018. Due to the initial rapid expansion of ponds, N removal by ponds increased from 6.4 % in 1960 to 13.6 % in 1990. Sedimentation is prevalent in ponds, particularly in small ponds with a sedimentation accumulation rate of 2.96 cm yr. Pond sedimentation, which reduces HRT, resulted in a decrease in pond N removal percentage to 11.2 % in 2018 and a projected 7.4 % by the year 2060, assuming similar sediment accumulation rates persist in the future. Overall, our findings underscore the non-negligible role of ponds as landscape nodes in N cycling. Urgent mitigation measures are needed to extend the lifetime of existing ponds and sustain their critical role in water quality management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121987 | DOI Listing |
Environ Res
December 2024
School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China. Electronic address:
Aquaculture systems contribute to atmospheric NO, but the magnitude of this NO source is largely uncertain. Here, we synthesized data from 139 aquaculture sites based on 59 peer-reviewed publications, and estimated that China's aquaculture systems emitted 9.68 Gg N yr (4.
View Article and Find Full Text PDFSci Total Environ
December 2024
ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India.
Aquaculture, particularly shrimp farming, is crucial for global food security. However, the increasing presence of microplastics (MPs) in marine environments, shrimp feeds, and atmospheric particles has made MP contamination in shrimp tissues inevitable. This study systematically investigates the abundance, characteristics, and temporal trends (from 15th to the 120th day of culture) of MPs contamination in Litopenaeus vannamei, along with associated feed, water, and sediment across 12 shrimp ponds of two major shrimp-producing regions of India.
View Article and Find Full Text PDFMicrobiome
December 2024
College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
J Med Entomol
December 2024
Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso.
Malaria remains a major public health threat in Burkina Faso, as in most sub-Saharan Africa countries. Malaria control relies mainly on long-lasting insecticide-treated nets (LLINs) and indoor residual spraying. In Burkina Faso, an escalating of insecticide resistance has been observed over the last decades.
View Article and Find Full Text PDFPeerJ
December 2024
cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
The lack of reliable data on length-mass relationships, essential to obtain accurate biomass estimates, limits our ability to easily assess secondary production by aquatic invertebrates. In the absence of published equations from similar habitat conditions, authors often borrow equations developed in geographic regions with different climate conditions, which may bias biomass estimates. A literature overview of published size-mass relationships for Portugal and Sweden highlights the need for further data within these biogeographic regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!