AI Article Synopsis

  • Metabolic dysfunction-associated steatotic liver disease (MASLD) involves fatty liver disease linked to conditions like obesity and diabetes, which can lead to more severe liver issues like inflammation and fibrosis.
  • The FDA has approved a new drug, resmetirom, as the first treatment for metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis, with ongoing research into its effectiveness and other potential therapies.
  • Despite the promising approval of resmetirom, challenges remain in understanding MASLD's complexity, and future developments may focus on combination therapies and tailored treatments for patients.

Article Abstract

Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by hepatic steatosis and cardiometabolic risk factors like obesity, type 2 diabetes, and dyslipidemia. Persistent metabolic injury may promote inflammatory processes resulting in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Mechanistic insights helped to identify potential drug targets, thereby supporting the development of novel compounds modulating disease drivers.

Areas Covered: The U.S. Food and Drug Administration has recently approved the thyroid hormone receptor β-selective thyromimetic resmetirom as the first compound to treat MASH and liver fibrosis. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. Lessons learned from terminated clinical trials are discussed together with the first results of trials investigating novel combinational therapeutic approaches.

Expert Opinion: Approval of resmetirom as the first anti-MASH agent may revolutionize the therapeutic landscape. However, long-term efficacy and safety data for resmetirom are currently lacking. In addition, heterogeneity of MASLD reflects a major challenge to define effective agents. Several lead compounds demonstrated efficacy in reducing obesity and hepatic steatosis, while anti-inflammatory and antifibrotic effects of monotherapy appear less robust. Better mechanistic understanding, exploration of combination therapies, and patient stratification hold great promise for MASLD therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14656566.2024.2374463DOI Listing

Publication Analysis

Top Keywords

metabolic dysfunction-associated
12
pharmacotherapeutic options
8
dysfunction-associated steatotic
8
steatotic liver
8
liver disease
8
hepatic steatosis
8
mash liver
8
liver fibrosis
8
metabolic
4
options metabolic
4

Similar Publications

To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction associated steatotic liver disease (MASLD) and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric restricted rat with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate (RC), we investigated male and female IUGR-Hfhf and IUGR-RC, versus HFhf and CON offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, hepatomegaly with hepatic steatosis.

View Article and Find Full Text PDF

Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).

View Article and Find Full Text PDF

Aims/introduction: Patients with type 2 diabetes are at high risk of developing steatotic liver disease (SLD). Weight loss has proven effective in treating metabolic dysfunction-associated steatotic liver disease (MASLD) in obese patients with type 2 diabetes, with sodium-glucose cotransporter 2 (SGLT2) inhibitors showing promising results. However, lean MASLD is more prevalent in Japan, necessitating alternative approaches to body weight reduction.

View Article and Find Full Text PDF

Background: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) encompasses a spectrum of histological conditions ranging from simple steatosis to fibrosing steatohepatitis, and is a risk factor for cardiovascular diseases (CVD). While oxidised apolipoproteins A and B have been linked to obesity and CVD, the association between other oxidised apolipoproteins and MASLD is yet to be established. To fill this gap, we characterised the circulating serum peptidome of patients with MASLD.

View Article and Find Full Text PDF

Background/aims: The prognostic importance of changes in vibration-controlled transient elastography (VCTE) parameters, liver stiffness measurement (LSM), and controlled attenuation parameter (CAP), in individuals with type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) is unknown.

Methods: A prospective cohort of 288 patients underwent 2 VCTE exams at least 2 years apart, and the relative percentage changes in LSM and CAP were calculated. Outcomes were the occurrence of any liver-related events (LREs), cardiovascular events (CVEs), and all-cause mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!