There is increasing evidence that musculoskeletal tissues are differentially regulated by sex hormones in males and females. The influence of sex hormones, in addition to other sex-based differences such as in anatomical alignment and immune-system function, impact the prevalence and severity of disease as well as the types of injuries that affect the musculoskeletal system and the outcomes of prevention measures and treatment. Literature specifically addressing sex differences related to the musculoskeletal system is limited, underscoring the imperative for both basic and clinical research on this topic. This review highlights areas of research that have implications for bone and cartilage health, including growth and development, sports injuries, osteoarthritis, osteoporosis, and bone frailty. It is clear that important aspects of the musculoskeletal system have been understudied. Consideration of how sex hormone therapy will affect musculoskeletal tissues in prepuberty, during puberty, and in adults is vital, yet little is known. The purpose of this article is to foster awareness and interest in advancing our understanding of how sex differences influence orthopaedic practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338726 | PMC |
http://dx.doi.org/10.2106/JBJS.24.00194 | DOI Listing |
J Orthop Sci
January 2025
Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Faculty of Medicine, Sfax, Tunisia; Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia.
Objective: This study aimed to assess the effect of implantation of fresh human amniotic membranes (HAM) on bone consolidation during distraction bone lengthening.
Methods: Ten New Zealand white rabbits were used in this study. For each rabbit, we performed a diaphyseal tibial osteotomy after installing a single-plane distraction external fixator.
Curr Opin Psychol
December 2024
Doctorate in Clinical Psychology, Department of Psychology, Royal Holloway, University of London, United Kingdom; Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, United Kingdom.
Accumulating evidence suggests that stigma is a pervasive and pernicious psychosocial phenomenon that affects people living with chronic pain. In this narrative review, we describe the nature of stigma experienced by people with chronic pain and discuss its multifaceted determinants. These determinants include features of pain itself and intersectional factors, including comorbid conditions and social marginalization.
View Article and Find Full Text PDFPhysiother Res Int
January 2025
Department of Biomedical Engineering, University of Engineering and Technology (UET) Lahore, Narowal Campus, Narowal, Pakistan.
Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.
View Article and Find Full Text PDFPeerJ
January 2025
Rye, NY, United States of America.
is one of the best-known pterosaurs, with well over 100 specimens being held in public collections. Most of these represent juvenile animals, and the adults known are typically around 1 m in wingspan. Here we describe a near complete skeleton, preserved partially in 3D, of an animal with a wingspan of around 1.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA.
Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.
Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!