A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data-driven inverse design of flexible pressure sensors. | LitMetric

Artificial skins or flexible pressure sensors that mimic human cutaneous mechanoreceptors transduce tactile stimuli to quantitative electrical signals. Conventional trial-and-error designs for such devices follow a forward structure-to-property routine, which is usually time-consuming and determines one possible solution in one run. Data-driven inverse design can precisely target desired functions while showing far higher productivity, however, it is still absent for flexible pressure sensors because of the difficulties in acquiring a large amount of data. Here, we report a property-to-structure inverse design of flexible pressure sensors, exhibiting a significantly greater efficiency than the conventional routine. We use a reduced-order model that analytically constrains the design scope and an iterative "jumping-selection" method together with a surrogate model that enhances data screening. As an exemplary scenario, hundreds of solutions that overcome the intrinsic signal saturation have been predicted by the inverse method, validating for a variety of material systems. The success in property design on multiple indicators demonstrates that the proposed inverse design is an efficient and powerful tool to target multifarious applications of flexible pressure sensors, which can potentially advance the fields of intelligent robots, advanced healthcare, and human-machine interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252744PMC
http://dx.doi.org/10.1073/pnas.2320222121DOI Listing

Publication Analysis

Top Keywords

flexible pressure
20
pressure sensors
20
inverse design
16
data-driven inverse
8
design flexible
8
design
6
flexible
5
pressure
5
sensors
5
sensors artificial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!