Cyprodinil, a globally utilized broad-spectrum pyrimidine amine fungicide, has been observed to elicit cardiac abnormality. Resveratrol (RSV), a naturally occurring polyphenolic compound, showcases remarkable defensive properties in nurturing cardiac development. To investigate whether RSV could protect against cyprodinil-induced cardiac defects, we exposed zebrafish embryos to cyprodinil (500 μg/L) in the presence or absence of RSV (1 μM). Our results showed that RSV significantly mitigated the decrease of survival rate and embryo movement and the hatching delay induced by cyprodinil. In addition, RSV also improved cyprodinil-induced zebrafish cardiac developmental toxicity, including pericardial edema and cardiac function impairment. In mechanism, RSV attenuated the cyprodinil-induced changes in mRNA expression involved in cardiac development, such as myh6, myl7, tbx5, and gata4, and calcium ion channels, such as ncx1h, slc8a4a, and atp2a2b. We further showed that RSV might inhibit the activity of aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. In summary, our findings establish that the protective effects of RSV against the cardiac developmental toxicity are induced by cyprodinil due to its remarkable ability to inhibit AhR activity. Our findings not only shed light on a new avenue for regulating and ensuring the safe utilization of cyprodinil but also presents a novel concept to promote its responsible use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34024-z | DOI Listing |
Am J Physiol Endocrinol Metab
January 2025
Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239.
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared to the offspring regular diet-fed mothers (Off-RD).
View Article and Find Full Text PDFQJM
January 2025
Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
Background: ALG8-congenital disorder of glycosylation (ALG8-CDG) is a rare inherited metabolic disorder leading to severe multisystem manifestations, with no reported prenatal patients to date.
Methods: We describe two fetuses from a single family with ALG8-CDG presenting with prenatal hydrops, undergoing comprehensive prenatal ultrasound, umbilical cord blood biochemistry, autopsy, placental pathology, and genetic testing.
Results: Prenatal ultrasound revealed fetal hydrops, skeletal anomalies, cardiac developmental abnormalities, cataracts, echogenic kidneys and bowel, oligohydramnios, choroid plexus cysts, and intrauterine growth restriction.
Hum Brain Mapp
January 2025
Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.
View Article and Find Full Text PDFJ Family Med Prim Care
December 2024
Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
The Kabuki syndrome (KS) is a rare congenital disease that has two different types, KS1 and KS2, with variant in epigenetic gene KMT2D and KDM6A, respectively. It is associated with multiple abnormalities such as (developmental delay, atypical facial features, cardiac anomalies, minor skeleton anomalies, genitourinary anomalies, and mild to moderate intellectual disability). This syndrome can lead to neonatal hypoglycemia that results from hyperinsulinemia and electrolyte abnormalities.
View Article and Find Full Text PDFBMC Pediatr
January 2025
Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Nanjing, 210004, People's Republic of China.
Background: Chromosomal inversions are underappreciated causes of rare diseases given their detection, resolution, and clinical interpretation remain challenging. Heterozygous mutations in the MEIS2 gene cause an autosomal dominant syndrome characterized by intellectual disability, cleft palate, congenital heart defect, and facial dysmorphism at variable severity and penetrance.
Case Presentation: Herein, we report a Chinese girl with intellectual disability, developmental delay, and congenital heart defect, in whom G-banded karyotype analysis identified a de novo paracentric inversion 46,XX, inv(15)(q15q26.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!