Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10912-024-09869-7 | DOI Listing |
FASEB J
January 2025
Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana, USA.
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs).
View Article and Find Full Text PDFAdv Mater
January 2025
Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 117004, China.
Gynecological cancers present significant treatment challenges due to drug resistance and adverse side effects. This review explores advancements in lysosomal escape mechanisms, essential for enhancing nano-therapeutic efficacy. Strategies such as pH-sensitive linkers and membrane fusion are examined, showcasing their potential to improve therapeutic outcomes in ovarian, cervical, and uterine cancers.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China.
In this study, hollow mesoporous silica nanoparticles (HMSN) coated with a 4T1 tumor cell membrane were used to construct biomimetic nanomaterials (DTX@CHMSN) for the treatment of breast cancer. The nanodrug can improve the water solubility of polyenetaxel (DTX) by taking advantage of the special structure, good biocompatibility, and adjustable surface chemical properties of HMSN. Hollow mesoporous silica nanoparticles are coated with 4T1 cell membranes derived from homologous tumors (CHMSN).
View Article and Find Full Text PDFRegen Biomater
November 2024
Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
Low tumor enrichment remains a serious and urgent problem for drug delivery in cancer therapy. Accurate targeting of tumor sites is still a critical aim in cancer therapy. Though there have been a variety of delivery strategies to improve the tumor targeting and enrichment, biological barriers still cause most delivered guests to fail or be excreted before they work.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!