AI Article Synopsis

Article Abstract

Triple-negative breast cancer (TNBC) could benefit from PARP inhibitors (PARPi) for their frequent defective homologous recombination repair (HR). However, the efficacy of PARPi is limited by their lower bioavailability and high susceptibility to drug resistance, so it often needs to be combined with other treatments. Herein, polydopamine nanoparticles (PDMN) were constructed to load Olaparib (AZD) as two-channel therapeutic nanoplatforms. The PDMN has a homogeneous spherical structure around 100 nm and exhibits a good photothermal conversion efficiency of 62.4%. The obtained AZD-loaded nanoplatform (PDMN-AZD) showed enhanced antitumor effects through the combination of photothermal therapy (PTT) and PARPi. By western blot and flow cytometry, we found that PTT and PARPi could exert synergistic antitumor effects by further increasing DNA double-strand damage (DSBs) and enhancing HR defects. The strongest therapeutic effect of PDMN-AZD was observed in a BRCA-deficient mouse tumor model. In conclusion, the PDMN-AZD nanoplatform designed in this study demonstrated the effectiveness of PTT and PARPi for synergistic treatment of TNBC and preliminarily explained the mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-024-01650-6DOI Listing

Publication Analysis

Top Keywords

ptt parpi
12
photothermal therapy
8
homologous recombination
8
recombination repair
8
antitumor effects
8
parpi
5
parp inhibitor
4
inhibitor boost
4
boost efficacy
4
efficacy photothermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!