The storage ring of the high energy photon source will be driven by five 166.6 MHz β = 1 quarter-wave superconducting cavities operating at 4 K. A higher-order-mode-damped superconducting cavity was designed with excellent rf and mechanical properties based on the successful development of the proof-of-principle cavity. The mechanical design of the dressed cavity was focused on addressing stress safety throughout the processes, tunability, frequency detuning due to pressure fluctuation, and Lorentz force, among other factors. A new liquid helium vessel was designed along with a comprehensive stiffening scheme to mitigate the surging peak stress on the cavity resulting from the significantly unequal beam pipe size. In the first batch, three cavities were manufactured, and surface preparations were carefully conducted to eliminate defects and etching traces while ensuring cleanliness. The cavity's Q0 at the design voltage of 1.5 MV reached 3.8 × 109 at 4 K, comfortably surpassing the design goal. Field emission onset was not observed during the entire test up to a peak electric field of 60 MV/m, thanks to the optimized processing procedures. Subsequently, one cavity was welded with the newly designed helium vessel and vertically tested at 2 K, achieving an rf performance comparable to the bare cavities, demonstrating the success of the jacketed cavity. This paper presents the design, fabrication, surface preparation, and cryogenic tests of the first higher-order-mode-damped 166.6 MHz β = 1 superconducting cavity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0206454 | DOI Listing |
Science
December 2024
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
We propose and experimentally demonstrate a novel protocol for transferring quantum states between superconducting cavities. This approach utilizes continuous two-mode squeezing interactions to generate entanglement without the exchange of any carrier photons. In contrast to the discrete operations of entanglement and Bell-state measurement in quantum teleportation, our scheme is symmetric and continuous.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden.
We present a continuous microwave photon counter based on superconducting cavity-coupled semiconductor quantum dots. The device utilizes photon-assisted tunneling in a double quantum dot with tunneling events being probed by a third dot. Our device detects both single and multiple-photon absorption events independently, thanks to the energy tunability of a two-level double-dot absorber.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Theory Department, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761 Hamburg, Germany.
Strong laser pulses can control superconductivity, inducing nonequilibrium transient pairing by leveraging strong-light matter interaction. Here, we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB[Formula: see text] under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature T[Formula: see text] can be enhanced at most by [Formula: see text]10% in an in-plane (or out-of-plane) polarized and realistic cavity via photon vacuum fluctuations.
View Article and Find Full Text PDFCurr Issues Mol Biol
October 2024
Research and Higher Education Center of UNEPROP, Hermosillo 83105, Mexico.
Previously, we described that Adenine, Thymine, Cytosine, and Guanine nucleobases were superconductors in a quantum superposition of phases on each side of the central hydrogen bond acting as a Josephson Junction. Genomic DNA has two strands wrapped helically around one another, but during transcription, they are separated by the RNA polymerase II to form a molecular condensate called the transcription bubble. Successive steps involve the bubble translocation along the gene body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!