A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the quantum dynamical treatment of surface vibrational modes for reactive scattering of H2 from Cu(111) at 925 K. | LitMetric

We construct the effective Hartree potential for H2 on Cu(111) as introduced in our earlier work [Dutta et al., J. Chem. Phys. 154, 104103 (2021), and Dutta et al., J. Chem. Phys. 157, 194112 (2022)] starting from the same gas-metal interaction potential obtained for 0 K. Unlike in that work, we now explicitly account for surface expansion at 925 K and investigate different models to describe the surface vibrational modes: (i) a cluster model yielding harmonic normal modes at 0 K and (ii) slab models resulting in phonons at 0 and 925 K according to the quasi-harmonic approximation-all consistently calculated at the density functional theory level with the same exchange-correlation potential. While performing dynamical calculations for the H2(v = 0, j = 0)-Cu(111) system employing Hartree potential constructed with 925 K phonons and surface temperature, (i) the calculated chemisorption probabilities are the highest compared to the other approaches over the energy domain and (ii) the threshold for the reaction probability is the lowest, in close agreement with the experiment. Although the survival probabilities (v' = 0) depict the expected trend (lower in magnitude), the excitation probabilities (v' = 1) display a higher magnitude since the 925 K phonons and surface temperature are more effective for the excitation process compared to the phonons/normal modes obtained from the other approaches investigated to describe the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0217639DOI Listing

Publication Analysis

Top Keywords

surface vibrational
8
vibrational modes
8
hartree potential
8
chem phys
8
describe surface
8
925 k phonons
8
phonons surface
8
surface temperature
8
surface
6
quantum dynamical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!