A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning Enhanced Label-Free Action Potential Detection Using Plasmonic-Based Electrochemical Impedance Microscopy. | LitMetric

Measuring neuronal electrical activity, such as action potential propagation in cells, requires the sensitive detection of the weak electrical signal with high spatial and temporal resolution. None of the existing tools can fulfill this need. Recently, plasmonic-based electrochemical impedance microscopy (P-EIM) was demonstrated for the label-free mapping of the ignition and propagation of action potentials in neuron cells with subcellular resolution. However, limited by the signal-to-noise ratio in the high-speed P-EIM video, action potential mapping was achieved by averaging 90 cycles of signals. Such extensive averaging is not desired and may not always be feasible due to factors such as neuronal desensitization. In this study, we utilized advanced signal processing techniques to detect action potentials in P-EIM extracted signals with fewer averaged cycles. Matched filtering successfully detected action potential signals with as few as averaging five cycles of signals. Long short-term memory (LSTM) recurrent neural network achieved the best performance and was able to detect single-cycle stimulated action potential successfully [satisfactory area under the receiver operating characteristic curve (AUC) equal to 0.855]. Therefore, we show that deep learning-based signal processing can dramatically improve the usability of P-EIM mapping of neuronal electrical signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283340PMC
http://dx.doi.org/10.1021/acs.analchem.4c01179DOI Listing

Publication Analysis

Top Keywords

action potential
20
plasmonic-based electrochemical
8
electrochemical impedance
8
impedance microscopy
8
neuronal electrical
8
action potentials
8
averaging cycles
8
cycles signals
8
signal processing
8
action
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!