Background: This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid.
Methods: LS and LSK were employed as adsorbents for UMCC 2951 in a submerged semi-continuous acetification process. Experiments were conducted under reciprocal shaking at 1 Hz and a temperature of 32 °C. The performance of the two systems (LS-AAB and LSK-AAB respectively) was evaluated based on cell dry weight (CDW), acetification rate, and BC biofilm formation.
Results: The use of LS significantly increased the biomass yield during acetification, achieving a CDW of 3.34 mg/L versus the 0.91 mg/L obtained with planktonic cells. Coating LS with κ-carrageenan further enhanced yield, with a CDW of 4.45 mg/L. Acetification rates were also higher in the LSK-AAB system, reaching 3.33 ± 0.05 g/L d as opposed to 2.45 ± 0.05 g/L d for LS-AAB and 1.13 ± 0.05 g/L d for planktonic cells. Additionally, BC biofilm formation during the second operational cycle was more pronounced in the LSK-AAB system (37.0 ± 3.0 mg/L, as opposed to 25.0 ± 2.0 mg/L in LS-AAB).
Conclusions: This study demonstrates that LS significantly improves the efficiency of the acetification process, particularly when enhanced with κ-carrageenan. The increased biomass yield, accelerated acetification, and enhanced BC biofilm formation highlight the potential of the LS-AAB system, and especially the LSK-AAB variant, in sustainable and effective vinegar production. These systems offer a promising approach for small-scale, semi-continuous acetification processes that aligns with eco-friendly practices and caters to specialized market needs. Finally, this innovative method facilitates the dual production of acetic acid and bacterial cellulose, with potential applications in biotechnological fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216191 | PMC |
http://dx.doi.org/10.7717/peerj.17650 | DOI Listing |
Foods
October 2024
CQ-VR, Chemistry Research Center, Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
Wine vinegar, valued for its ancient origins and culinary versatility, has garnered scientific interest due to its complex composition and potential health benefits. This study aims to explore the nutritional and bioactive properties of different wine vinegars, focusing on their amino acid content, particularly tryptophan-derived molecules such as serotonin and melatonin. White wine vinegar, red wine vinegar, port wine vinegar, and balsamic vinegar from the Douro and Rioja regions were analyzed using high-performance liquid chromatography and solid-phase extraction (HPLC-SPE).
View Article and Find Full Text PDFPeerJ
July 2024
Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand.
Background: This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid.
View Article and Find Full Text PDFMolecules
May 2024
Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, 14014 Cordoba, Spain.
Acetic acid bacteria (AAB) and other members of the complex microbiotas, whose activity is essential for vinegar production, display biodiversity and richness that is difficult to study in depth due to their highly selective culture conditions. In recent years, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for rapidly identifying thousands of proteins present in microbial communities, offering broader precision and coverage. In this work, a novel method based on LC-MS/MS was established and developed from previous studies.
View Article and Find Full Text PDFBiotechnol J
February 2024
Department of Inorganic Chemistry and Chemical Engineering (Chemical Engineering area), Instituto Químico Para la Energía y el Medioambiente (IQUEMA), Marie Curie building (C3), Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), Universidad de Córdoba, Córdoba, Spain.
Vinegar and related bioproducts containing acetic acid as the main component are among the most appreciated fermented foodstuffs in numerous European and Asian countries because of their exceptional organoleptic and bio-healthy properties. Regarding the acetification process and obtaining of final products, there is still a lack of knowledge on fundamental aspects, especially those related to the study of biodiversity and metabolism of the present microbiota. In this context, omic technologies currently allow for the massive analysis of macromolecules and metabolites for the identification and characterization of these microorganisms working in their natural media without the need for isolation.
View Article and Find Full Text PDFFront Microbiol
December 2022
Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain.
Vinegars elaborated in southern Spain are highly valued all over the world because of their exceptional organoleptic properties and high quality. Among the factors which influence the characteristics of the final industrial products, the composition of the microbiota responsible for the process and the raw material used as acetification substrate have a crucial role. The current state of knowledge shows that few microbial groups are usually present throughout acetification, mainly acetic acid bacteria (AAB), although other microorganisms, present in smaller proportions, may also affect the overall activity and behavior of the microbial community.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!