AI Article Synopsis

  • Computational studies in network neuroscience use models to analyze how brain communication dynamics correlate with its structure, focusing on signal transmission strategies like random walks and shortest path routing.
  • The research compares packet switching (where signals are divided into smaller packets) and message switching (where signals are sent as whole messages) and observes their effects on communication speed in brain networks.
  • Findings indicate that packet switching, particularly in networks with hubs, generally enhances communication efficiency for strategies that balance speed and information needs, providing valuable insights into how brain networks may process information.

Article Abstract

Computational studies in network neuroscience build models of communication dynamics in the connectome that help us understand the structure-function relationships of the brain. In these models, the dynamics of cortical signal transmission in brain networks are approximated with simple propagation strategies such as random walks and shortest path routing. Furthermore, the signal transmission dynamics in brain networks can be associated with the switching architectures of engineered communication systems (e.g., message switching and packet switching). However, it has been unclear how propagation strategies and switching architectures are related in models of brain network communication. Here, we investigate the effects of the difference between packet switching and message switching (i.e., whether signals are packetized or not) on the transmission completion time of propagation strategies when simulating signal propagation in mammalian brain networks. The results show that packetization in the connectome with hubs increases the time of the random walk strategy and does not change that of the shortest path strategy, but decreases that of more plausible strategies for brain networks that balance between communication speed and information requirements. This finding suggests an advantage of packet-switched communication in the connectome and provides new insights into modeling the communication dynamics in brain networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142457PMC
http://dx.doi.org/10.1162/netn_a_00360DOI Listing

Publication Analysis

Top Keywords

brain networks
24
communication dynamics
12
dynamics brain
12
propagation strategies
12
brain
8
signal transmission
8
shortest path
8
switching architectures
8
message switching
8
packet switching
8

Similar Publications

Multilayer network analysis in patients with end-stage kidney disease.

Sci Rep

December 2024

Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.

This study aimed to investigate alterations in a multilayer network combining structural and functional layers in patients with end-stage kidney disease (ESKD) compared with healthy controls. In all, 38 ESKD patients and 43 healthy participants were prospectively enrolled. They exhibited normal brain magnetic resonance imaging (MRI) without any structural lesions.

View Article and Find Full Text PDF

Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.

View Article and Find Full Text PDF

Network hypersynchrony is emerging as an important system-level mechanism underlying seizures, as well as cognitive and behavioural impairments, in children with structural brain abnormalities. We investigated patterns of single neuron action potential behaviour in 206 neurons recorded from tubers, transmantle tails of tubers and normal looking cortex in 3 children with tuberous sclerosis. The patterns of neuronal firing on a neuron-by-neuron (autocorrelation) basis did not reveal any differences as a function of anatomy.

View Article and Find Full Text PDF

An fMRI study on the generalization of motor learning after brain actuated supernumerary robot training.

NPJ Sci Learn

December 2024

Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.

Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI.

View Article and Find Full Text PDF

Electrical excitability of neuronal networks based on the voltage threshold of electrical stimulation.

Sci Rep

December 2024

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.

Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!