Functional brain networks have preserved architectures in rest and task; nevertheless, previous work consistently demonstrated task-related brain functional reorganization. Efficient rest-to-task functional network reconfiguration is associated with better cognition in young adults. However, aging and cognitive load effects, as well as contributions of intra- and internetwork reconfiguration, remain unclear. We assessed age-related and load-dependent effects on global and network-specific functional reconfiguration between rest and a spatial working memory (SWM) task in young and older adults, then investigated associations between functional reconfiguration and SWM across loads and age groups. Overall, global and network-level functional reconfiguration between rest and task increased with age and load. Importantly, more efficient functional reconfiguration associated with better performance across age groups. However, older adults relied more on internetwork reconfiguration of higher cognitive and task-relevant networks. These reflect the consistent importance of efficient network updating despite recruitment of additional functional networks to offset reduction in neural resources and a change in brain functional topology in older adults. Our findings generalize the association between efficient functional reconfiguration and cognition to aging and demonstrate distinct brain functional reconfiguration patterns associated with SWM in aging, highlighting the importance of combining rest and task measures to study aging cognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142455PMC
http://dx.doi.org/10.1162/netn_a_00358DOI Listing

Publication Analysis

Top Keywords

functional reconfiguration
24
older adults
16
functional
12
rest task
12
brain functional
12
reconfiguration
10
spatial working
8
functional network
8
network reconfiguration
8
young older
8

Similar Publications

Modeling the interplay between regional heterogeneity and critical dynamics underlying brain functional networks.

Neural Netw

December 2024

School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:

The human brain exhibits heterogeneity across regions and network connectivity patterns; However, how these heterogeneities contribute to whole-brain network functions and cognitive capacities remains unclear. In this study, we focus on the regional heterogeneity reflected in local dynamics and study how it contributes to the emergence of functional connectivity patterns, network ignition dynamics of the empirical brains. We find that the level of synchrony among voxelwise neural activities measured from the fMRI data is significantly correlated with the transcriptional variations in excitatory and inhibitory receptor gene expression.

View Article and Find Full Text PDF

Reconfiguration of brain network dynamics in bipolar disorder: a hidden Markov model approach.

Transl Psychiatry

December 2024

School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.

Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes.

View Article and Find Full Text PDF

Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells.

Stem Cell Reports

December 2024

School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China. Electronic address:

Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve.

View Article and Find Full Text PDF

The phenomenon of neural plasticity pertains to the intrinsic capacity of neurons to undergo structural and functional reconfiguration through learning and experiential interaction with the environment. These changes could manifest themselves not only as a consequence of various life experiences but also following therapeutic interventions, including the application of noninvasive brain stimulation (NIBS) and psychotherapy. As standalone therapies, both NIBS and psychotherapy have demonstrated their efficacy in the amelioration of psychiatric disorders' symptoms, with a certain variability in terms of effect sizes and duration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!