In recent years, there has been an increasing interest in studying brain-heart interactions. Methodological advancements have been proposed to investigate how the brain and the heart communicate, leading to new insights into some neural functions. However, most frameworks look at the interaction of only one brain region with heartbeat dynamics, overlooking that the brain has functional networks that change dynamically in response to internal and external demands. We propose a new framework for assessing the functional interplay between cortical networks and cardiac dynamics from noninvasive electrophysiological recordings. We focused on fluctuating network metrics obtained from connectivity matrices of EEG data. Specifically, we quantified the coupling between cardiac sympathetic-vagal activity and brain network metrics of clustering, efficiency, assortativity, and modularity. We validate our proposal using open-source datasets: one that involves emotion elicitation in healthy individuals, and another with resting-state data from patients with Parkinson's disease. Our results suggest that the connection between cortical network segregation and cardiac dynamics may offer valuable insights into the affective state of healthy participants, and alterations in the network physiology of Parkinson's disease. By considering multiple network properties, this framework may offer a more comprehensive understanding of brain-heart interactions. Our findings hold promise in the development of biomarkers for diagnostic and cognitive/motor function evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168717 | PMC |
http://dx.doi.org/10.1162/netn_a_00369 | DOI Listing |
Neuro Oncol
January 2025
Department of Breast Oncology, Moffitt Cancer Center.
Background: Screening of asymptomatic stage IV breast cancer with brain MRIs is currently not recommended by National Comprehensive Cancer Network (NCCN) Guidelines. The incidence of asymptomatic brain metastasis is not well documented.
Methods: The study is designed as a single arm, phase II trial, with the goal of investigating surveillance brain MRIs in neurologically asymptomatic patients with metastatic breast cancer.
Front Neural Circuits
January 2025
Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy.
The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.
View Article and Find Full Text PDFFront Oncol
January 2025
The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
Introduction: Gliomas, particularly glioblastomas (GBM), are highly aggressive with a poor prognosis and low survival rate. Currently, deoxyelephantopin (DET) has shown promising anti-inflammatory and anti-tumor effects. Using clinical prognostic analysis, molecular docking, and network pharmacology, this study aims to explore the primary targets and signaling pathways to identify novel GBM treatment approaches.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Introduction: Cerebral small vessel disease (CSVD) is a chronic systemic degenerative disease affecting small blood vessels in the brain, leading to cognitive impairments. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that applies low electrical currents to the scalp, shows promise in treating cognitive and movement disorders. However, further clinical evaluation is required to assess the long-term effects of tDCS on neuroplasticity and gait in patients with CSVD.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.
Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!