Trade-offs are crucial for species divergence and reproductive isolation. Trade-offs between investment in growth versus defense against herbivores are implicated in tropical forest diversity. Empirically exploring the role of growth-defense trade-offs in closely related species' reproductive isolation can clarify the eco-evolutionary dynamics through which growth-defense trade-offs contribute to diversity. and are recently diverged, interfertile, and partially sympatric neotropical understory plant species primarily isolated by divergent habitat adaptation. This divergent adaptation involves differences in growth rate, which may constrain investment in defense. Here, we investigate growth-defense trade-offs and how they relate to the divergent habitat adaptation that isolates these species. We characterize leaf toughness and chemistry, evaluate the feeding preferences of primary beetle herbivores in controlled trials and field-based experiments, and investigate natural herbivory patterns. We find clear trade-offs between growth and defense: slower-growing has tougher leaves and higher defensive chemical concentrations than faster-growing . has rapid growth-based drought avoidance, enabling growth in drier habitats with few specialist herbivores. Therefore, growth-defense trade-offs mediate synergistic biotic and abiotic selection, causing the divergent habitat adaptation that prevents most interspecific mating between and . Our findings advance understanding of ecological speciation by highlighting the interplay of biotic and abiotic selection that dictates the outcome of trade-offs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214971PMC
http://dx.doi.org/10.1002/ece3.11609DOI Listing

Publication Analysis

Top Keywords

growth-defense trade-offs
20
divergent habitat
12
habitat adaptation
12
trade-offs
8
reproductive isolation
8
biotic abiotic
8
abiotic selection
8
growth-defense
5
trade-offs promote
4
habitat
4

Similar Publications

A MACPF Protein OsCAD1 Balances Plant Growth and Immunity Through Regulating Salicylic Acid Homeostasis in Rice.

Plant Cell Environ

January 2025

State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, Zhejiang, China.

Unraveling the mechanisms behind plant growth and immunity contributes to effective crop improvement. Membrane attack complex/perforin (MACPF) domain proteins play vital roles in innate and adaptive immunity in vertebrates; however, their molecular functions in plants remain largely unexplored. Here, we isolated and characterized a rice mutant, Oryza sativa constitutively activated cell death 1 (oscad1), which exhibited a lesion mimic phenotype and growth inhibition with increased cell death, elevated ROS accumulation, and enhanced resistance to bacterial blight Xanthomonas oryzae pv.

View Article and Find Full Text PDF

The blue-light receptor CRY1 serves as a switch to balance photosynthesis and plant defense.

Cell Host Microbe

January 2025

CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China. Electronic address:

Plant stomata open in response to blue light, allowing gas exchange and water transpiration. However, open stomata are potential entry points for pathogens. Whether plants can sense pathogens and mount defense responses upon stomatal opening and how blue-light cues are integrated to balance growth-defense trade-offs are poorly characterized.

View Article and Find Full Text PDF

Beneficial microorganisms (BMs) promote plant growth and enhance stress resistance. This review summarizes how BMs induce growth promotion by improving nutrient uptake, producing growth-promoting hormones and stimulating root development. How BMs enhance disease resistance and help protect plants from abiotic stresses has also been explored.

View Article and Find Full Text PDF

Microbial volatiles organic compounds (mVOCs) play diverse roles in modulating plant growth and stress tolerance. However, the molecular responses of plants to mVOCs are largely undescribed. In this study, we examined the early transcriptomic response of Arabidopsis thaliana to two plant growth-promoting mVOCs (PGPVs) and one plant growth-inhibiting mVOC (PGIV).

View Article and Find Full Text PDF

Eutrophication-Driven Changes in Plankton Trophic Interactions: Insights from Trade-Offs in Functional Traits.

Environ Sci Technol

December 2024

Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.

Understanding how plankton trophic interactions, particularly phytoplankton nutrient uptake and zooplankton grazing, respond to eutrophication is important for maintaining aquatic ecosystem functions and developing effective mitigation strategies. Phytoplankton exhibit trade-offs in functional traits between growth rate and antipredation defense, thereby regulating these trophic interactions. However, the combined effects of eutrophication and such trait-based regulation on plankton communities and interactions remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!