AI Article Synopsis

  • The study analyzed seed dormancy in 15 common peatland plant species from temperate Asia, revealing varied responses to different dormancy-breaking treatments.
  • Nine species showed physiological dormancy, primarily of the non-deep type, while four exhibited morphophysiological dormancy, and two showed no dormancy at all.
  • Key findings indicated that seed traits, especially the embryo-to-seed length ratio and seed size, strongly influence dormancy, highlighting that nearly 90% of the tested species adapted to their environment through seed dormancy mechanisms.

Article Abstract

Despite their crucial role in determining the fate of seeds, the type and breaking mode of seed dormancy in peatland plants in temperate Asia with a continental monsoon climate are rarely known. Fifteen common peatland plant species were used to test their seed germination response to various dormancy-breaking treatments, including dry storage (D), gibberellin acid soaking (GA), cold stratification (CS), warm followed cold stratification (WCS), GA soaking + cold stratification (GA + CS) and GA soaking + warm followed cold stratification (GA + WCS). Germination experiment, viability and imbibition test, and morphological observation of embryos were conducted. Of the 15 species, nine showed physiological dormancy (PD), with non-deep PD being the dominant type. Four species, , , , and exhibited morphophysiological dormancy. Two species, and , demonstrated nondormancy. Overall, the effect hierarchy of dormancy-breaking is: CS > GA > WCS > GA + CS > D > GA + WCS. Principal component analysis demonstrated that seed traits, including embryo length: seed length ratio, seed size, and monocot/eudicot divergence, are more likely to influence seed dormancy than environmental factors. Our study suggests that nearly 90% of the tested peatland plant species in the Changbai Mountains demonstrated seed dormancy, and seed traits (e.g. embryo-to-seed ratio and seed size) and abiotic environmental factors (e.g. pH and temperature seasonality) are related to germination behavior, suggesting seed dormancy being a common adaptation strategy for the peatland plants in the temperate montane environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216845PMC
http://dx.doi.org/10.1002/ece3.11671DOI Listing

Publication Analysis

Top Keywords

seed dormancy
20
plant species
12
cold stratification
12
seed
11
germination response
8
temperate montane
8
peatland plants
8
plants temperate
8
peatland plant
8
demonstrated seed
8

Similar Publications

Red, known as Huangjing in Chinese, is a perennial plant valued in traditional Chinese medicine and is a nutritional food ingredient. With increasing market demand outpacing wild resource availability, cultivation has become essential for sustainable production. However, the cultivation of is challenged by the double dormancy characteristics of seeds, which include embryo and physiological dormancy.

View Article and Find Full Text PDF

During the dormant period of peach trees in winter, flower buds exhibit weak cold resistance and are susceptible to freezing at low temperatures. Understanding the physiological and molecular mechanisms underlying the response of local peach buds to low-temperature adversity is crucial for ensuring normal flowering, fruiting, and yield. In this study, the experimental materials included the conventional cultivar 'Xia cui' (XC) and the cold-resistant local resources 'Ding jiaba' (DJB) peach buds.

View Article and Find Full Text PDF

Background And Aims: Fire-released seed dormancy (SD) is a key trait for successful germination and plant persistence in many fire-prone ecosystems. Many local studies have shown that fire-released SD depends on heat and exposure time, dose of smoke-derived compounds, SD class, plant lineage and the fire regime. However, a global quantitative analysis of fire-released SD is lacking.

View Article and Find Full Text PDF

Multi-locus genome wide association study uncovers genetics of fresh seed dormancy in groundnut.

BMC Plant Biol

December 2024

Center of Excellence in Genomics & Systems Biology (CEGSB) and Centre for Pre-breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.

Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data.

View Article and Find Full Text PDF

Waterhemp emergence response to exogenous application of gibberellic and abscisic acids.

BMC Plant Biol

December 2024

Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA.

Background: The exogenous application of phytohormones to manipulate weed seed germination and emergence is a potential avenue for exploring alternative integrated weed management strategies. Greenhouse and field experiments were conducted to investigate the effects of exogenous applications of the phytohormones gibberellic acid (GA3) and abscisic acid (ABA) on waterhemp (Amaranthus tuberculatus [Moq.]) emergence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!