Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: This study was aimed to establish a prediction model for spread through air spaces (STAS) in early-stage non-small cell lung cancer based on imaging and genomic features.
Methods: We retrospectively collected 204 patients (47 STAS+ and 157 STAS-) with non-small cell lung cancer who underwent surgical treatment in the Jinling Hospital from January 2021 to December 2021. Their preoperative CT images, genetic testing data (including next-generation sequencing data from other hospitals), and clinical data were collected. Patients were randomly divided into training and testing cohorts (7:3).
Results: The study included a total of 204 eligible patients. STAS were found in 47 (23.0%) patients, and no STAS were found in 157 (77.0%) patients. The receiver operating characteristic curve showed that radiomics model, clinical genomics model, and mixed model had good predictive performance (area under the curve [AUC] = 0.85; AUC = 0.70; AUC = 0.85).
Conclusions: The prediction model based on radiomics and genomics features has a good prediction performance for STAS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ajco.14099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!