AI Article Synopsis

  • Researchers aimed to assess if plasma neurofilament light chain (pNfL) levels can act as a real-time biomarker for chemotherapy-induced peripheral neurotoxicity (CIPN) across different chemotherapy drugs.
  • The study involved 82 patients receiving treatments (paclitaxel, brentuximab vedotin, or oxaliplatin) and evaluated their pNfL levels, Neuropathy Scores, and nerve conduction studies before, during, and after treatment.
  • Results indicated that all groups experienced increased pNfL levels during treatment, but those on paclitaxel showed significantly greater and earlier changes, suggesting the need for specific pNfL threshold values tailored for different chemotherapy agents.

Article Abstract

Background And Purpose: A real-time biomarker in chemotherapy-induced peripheral neurotoxicity (CIPN) would be useful for clinical decision-making during treatment. Neurofilament light chain (NfL) can be detected in blood in the case of neuroaxonal damage. The aim of the study was to compare the levels of plasma NfL (pNfL) according to the type of chemotherapeutic agent and the severity of CIPN.

Methods: This single-center prospective observational longitudinal study included patients treated with paclitaxel (TX; n = 34), brentuximab vedotin (BV; n = 29), or oxaliplatin (PT; n = 19). All patients were assessed using the Total Neuropathy Score-clinical version and Common Terminology Criteria for Adverse Events before, during, and up to 6-12 months after the end of treatment. Nerve conduction studies (NCS) were performed before and after chemotherapy discontinuation. Consecutive plasma samples were analyzed for NfL levels using a Simoa analyzer. Changes in pNfL were compared between groups and were eventually correlated with clinical and NCS data. Clinically relevant (CR) CIPN was considered to be grade ≥ 2.

Results: Eighty-two patients, mostly women (59.8%), were included. One third of the patients who received TX (29.4%), BV (31%), or PT (36.8%) developed CR-CIPN, respectively, without differences among them (p = 0.854). Although pNfL significantly increased during treatment and decreased throughout the recovery period in all three groups, patients receiving TX showed significantly greater and earlier changes in pNfL levels compared to the other agents (p < 0.001).

Conclusions: A variable change in pNfL is observed depending on the type of agent and mechanism of neurotoxicity with comparable CIPN severity, strongly implying the need to identify different cutoff values for each agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295167PMC
http://dx.doi.org/10.1111/ene.16369DOI Listing

Publication Analysis

Top Keywords

neurofilament light
8
light chain
8
chemotherapy-induced peripheral
8
peripheral neurotoxicity
8
changes pnfl
8
patients
5
plasma neurofilament
4
levels
4
chain levels
4
levels chemotherapy-induced
4

Similar Publications

Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.

Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.

View Article and Find Full Text PDF

Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity.

View Article and Find Full Text PDF

A growing amount of data has implicated the gene in the risk for Alzheimer's disease (AD), neurodegeneration, and accelerated aging. No studies have investigated the relationship of rs2075650 ('650 on the structural complexity of the brain or plasma markers of neurodegeneration. We used a comprehensive approach to quantify the impact of '650 on brain morphology and multiple cortical attributes in cognitively unimpaired (CU) individuals.

View Article and Find Full Text PDF

In early-stage Alzheimer's disease (AD) amyloid-β (Aβ) deposition can induce neuronal hyperactivity, thereby potentially triggering activity-dependent neuronal secretion of phosphorylated tau (p-tau), ensuing tau aggregation and spread. Therefore, cortical excitability is a candidate biomarker for early AD detection. Moreover, lowering neuronal excitability could potentially complement strategies to reduce Aβ and tau buildup.

View Article and Find Full Text PDF

Substantia nigra degeneration in spinocerebellar ataxia 2 and 7 using neuromelanin-sensitive imaging.

Eur J Neurol

January 2025

Institut du Cerveau-Paris Brain Institute ICM, Sorbonne Université, Inserm 1127, CNRS 7225, Hôpital de la Pitié Salpêtrière Paris, Paris, France.

Objective: Spinocerebellar ataxias (SCA) are neurodegenerative diseases with widespread lesions across the central nervous system. Ataxia and spasticity are usually predominant, but patients may also present with parkinsonism. We aimed to characterize substantia nigra pars compacta (SNc) degeneration in SCA2 and 7 using neuromelanin-sensitive imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!