Actinide +IV complexes with six nitrates [An(NO)] (An = Th, U, Np, and Pu) have been studied by N and O NMR spectroscopy in solution and first-principles calculations. Magnetic susceptibilities were evaluated experimentally using the Evans method and are in good agreement with the ab initio values. The evolution in the series of the crystal field parameters deduced from ab initio calculations is discussed. The NMR paramagnetic shifts are analyzed based on ab initio calculations. Because the cubic symmetry of the complex quenches the dipolar contribution, they are only of Fermi contact origin. They are evaluated from first-principles based on a complete active space/density functional theory (DFT) strategy, in good accordance with the experimental one. The ligand hyperfine coupling constants are deduced from paramagnetic shifts and calculated using unrestricted DFT. The latter are decomposed in terms of the contribution of molecular orbitals. It highlights two pathways for the delocalization of the spin density from the metallic open-shell 5f orbitals to the NMR active nuclei, either through the valence 5f hybridized with 6d to the valence 2p molecular orbitals of the ligands, or by spin polarization of the metallic 6p orbitals which interact with the 2s-based molecular orbitals of the ligands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c01694 | DOI Listing |
Chem Sci
January 2025
Department of Chemistry, Rice University Houston Texas 77005 USA
We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemical Engineering, Sirjan University of Technology Sirjan Iran https://scholar.google.com/citations?user=N6z-rHsAAAAJ&hl=en.
The potential applicability of the C nanocage and its boron nitride-doped analogs (CBN and CBN) as pyrazinamide (PA) carriers was investigated using density functional theory. Geometry optimization and energy calculations were performed using the B3LYP functional and 6-31G(d) basis set. Besides, dispersion-corrected interaction energies were calculated at CAM (Coulomb attenuated method)-B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) levels of theory.
View Article and Find Full Text PDFACS Mater Au
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
The integration of fluorinated benzothiadiazole (FBT) into donor-acceptor (D-A) copolymers represents a major advancement in the field of organic solar cells (OSCs). The fluorination process effectively fine-tunes the energy levels, reduces the highest occupied molecular orbital levels, and enhances the open-circuit voltages of the polymers. Furthermore, fluorination improves molecular packing and crystallinity, which significantly boosts the charge transport and overall device performance.
View Article and Find Full Text PDFJ Liq Biopsy
December 2024
Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
Adenoid cystic carcinoma (ACC) is a rare and lethal malignancy that originates in secretory glands of the head and neck. A prominent molecular feature of ACC is the overexpression of the proto-oncogene MYB. ACC has a poor long-term survival due to its high propensity for recurrence and protracted metastasis.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
Transition metal carbonyl and transition metal dinitrogen are fundamental chemical complexes in many important biological and catalytic processes. Interestingly, binding between a transition metal (TM) atom and carbonyl or dinitrogen results in spin state change. However, no study has evaluated the spin-orbit (SO) effect along the association pathway of any TM-CO or TM-N bond.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!