AI Article Synopsis

  • The study investigated the potential of 5,7,3',4'-tetramethoxyflavone (TMF) as a treatment for pulmonary fibrosis (PF), a serious lung disease, using cell and mouse models.
  • Results showed that while TMF did not significantly affect cell growth or migration, it effectively reduced myofibroblast activation and extracellular matrix production in response to TGF-β1 in cell tests.
  • Overall, TMF demonstrated promising therapeutic effects against PF in animal models without notable toxicity to the liver or kidneys, targeting multiple signaling pathways involved in the disease.

Article Abstract

Objective: This study aimed to investigate the use of 5,7,3',4'-tetramethoxyflavone (TMF) to treat pulmonary fibrosis (PF), a chronic and fatal lung disease. and models were used to examine the impact of TMF on PF.

Methods: NIH-3T3 (Mouse Embryonic Fibroblast) were exposed to transforming growth factor‑β1 (TGF-β1) and treated with or without TMF. Cell growth was assessed using the MTT method, and cell migration was evaluated with the scratch wound assay. Protein and messenger ribonucleic acid (mRNA) levels of extracellular matrix (ECM) genes were analyzed by western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Downstream molecules affected by TGF-β1 were examined by western blotting. , mice with bleomycin-induced PF were treated with TMF, and lung tissues were analyzed with staining techniques.

Results: The results showed that TMF had no significant impact on cell growth or migration. However, it effectively inhibited myofibroblast activation and ECM production induced by TGF-β1 in NIH-3T3 cells. This inhibition was achieved by suppressing various signaling pathways, including Smad, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/AKT (PI3K/AKT), and WNT/β-catenin. The experiments demonstrated the therapeutic potential of TMF in reducing PF induced by bleomycin in mice, and there was no significant liver or kidney toxicity observed.

Conclusion: These findings suggest that TMF has the potential to effectively inhibit myofibroblast activation and could be a promising treatment for PF. TMF achieves this inhibitory effect by targeting TGF-β1/Smad and non-Smad pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08923973.2024.2371150DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
8
tmf
8
treated tmf
8
cell growth
8
western blotting
8
myofibroblast activation
8
573'4'-tetramethoxyflavone suppresses
4
suppresses tgf-β1-induced
4
tgf-β1-induced activation
4
activation murine
4

Similar Publications

Pulmonary fibrosis (PF) is a medical condition that affects the lungs and causes scarring due to the deposition of excess fibrotic tissue. This is often preceded by various causes and can lead to long-term health consequences. The treatment of PF using mesenchymal stem cells (MSCs) to correct lung damage and decrease inflammation is a current focus of research.

View Article and Find Full Text PDF

Background: The risk factors for interstitial lung disease (ILD) in rheumatoid arthritis (RA) are inconsistent among previous studies. Furthermore, the factors associated with the emergence of the recently defined progressive fibrosing (PF) phenotype are unknown. Herein, we analyze the risk factors for ILD in RA.

View Article and Find Full Text PDF

Objective: Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible lung interstitial disease of unknown etiology with a fatal outcome. M2 macrophages have been recognized to play a significant role in PF pathogenesis. The role of protein hypoxia-inducible factor 1-α (HIF-1α) in M2 macrophage polarization in PF is largely unknown.

View Article and Find Full Text PDF

fibrosis is a genetic disease characterized by chronic lung infection, often with Pseudomonas aeruginosa, requiring repeated antibiotic treatment for pulmonary exacerbations. In the era of cystic fibrosis transmembrane conductance regulator modulator therapy, we assessed susceptibility to antipseudomonal antibiotics in modulator-eligible and modulator-ineligible children over 3 years and found that P. aeruginosa isolates largely remained susceptible to standard parenteral but not oral antimicrobial agents.

View Article and Find Full Text PDF

Pulmonary and systemic effects of inhaled crystalline silica in the HOCl-induced mouse model of systemic sclerosis: An experimental model of Erasmus syndrome.

Clin Immunol

December 2024

Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France. Electronic address:

Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!