Aim: To perform a direct, double-blind, randomised, crossover comparison of subcutaneous and intravenous glucagon-like peptide-1 (GLP-1) in hyperglycaemic subjects with type 2 diabetes naïve to GLP-1-based therapy.
Materials And Methods: Ten fasted, hyperglycaemic subjects (1 female, age 63 ± 10 years [mean ± SD], glycated haemoglobin 73.5 ± 22.0 mmol/mol [8.9% ± 2.0%], both mean ± SD) received subcutaneous GLP-1 and intravenous saline, or intravenous GLP-1 and subcutaneous saline. Infusion rates were doubled every 120 min (1.2, 2.4, 4.8 and 9.6 pmol·kg·min for subcutaneous, and 0.3, 0.6, 1.2 and 2.4 pmol·kg·min for intravenous). Plasma glucose, total and intact GLP-1, insulin, C-peptide, glucagon and gastrointestinal symptoms were evaluated over 8 h. The results are presented as mean ± SEM.
Results: Plasma glucose decreased more with intravenous (by ~8.0 mmol/L [144 mg/dL]) than subcutaneous GLP-1 (by ~5.6 mmol/L [100 mg/dL]; p < 0.001). Plasma GLP-1 increased dose-dependently, but more with intravenous than subcutaneous for both total (∆ 154.2 ± 3.9 pmol/L vs. 85.1 ± 3.8 pmol/L; p < 0.001), and intact GLP-1 (∆ 44.2 ± 2.2 pmol/L vs. 12.8 ± 2.2 pmol/L; p < 0.001). Total and intact GLP-1 clearance was higher for subcutaneous than intravenous GLP-1 (p < 0.001 and p = 0.002, respectively). The increase in insulin secretion was greater, and glucagon was suppressed more with intravenous GLP-1 (p < 0.05 each). Gastrointestinal symptoms did not differ (p > 0.05 each).
Conclusions: Subcutaneous GLP-1 administration is much less efficient than intravenous GLP-1 in lowering fasting plasma glucose, with less stimulation of insulin and suppression of glucagon, and much less bioavailability, even at fourfold higher infusion rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dom.15736 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!