Background: In recent years, the use of tapered-wedge short stems has increased due to their ability to preserve bones and tendons. Surgical techniques occasionally result in a varus position of the stem, which is particularly pronounced in short stems. Although the varus position is not clinically problematic, there are reports of an increased incidence of stress shielding and cortical hypertrophy. Thus, we evaluated and examined the acceptable range of varus angles using finite element analysis.
Methods: Patients diagnosed with osteoarthritis of the hip joint who had undergone arthroplasty were selected and classified into three types [champagne-flute (type A), intermediate (type B), and stovepipe (type C)]. Finite element analysis was performed using Mechanical Finder. The model was created using a Taperloc microplasty stem with the varus angle increased by 1° from 0° to 5° from the bone axis and classified into seven zones based on Gruen's zone classification under loading conditions in a one-leg standing position. The volume of interest was set, the mean equivalent stress for each zone was calculated.
Results: A significant decrease in stress was observed in zone 2, and increased stress was observed in zones 3 and 4, suggesting the emergence of a distal periosteal reaction, similar to the results of previous studies. In zone 2, there was a significant decrease in stress in all groups at a varus angle ≥ 3°. In zone 3, stress increased from ≥ 3° in type B and ≥ 4° in type C. In zone 4, there was a significant increase in stress at varus angles of ≥ 2° in types A and B and at ≥ 3° in type C.
Conclusion: In zone 2, the varus angle at which stress shielding above Engh classification grade 3 may appear is expected to be ≥ 3°. Distal cortical hypertrophy may appear in zones 3 and 4; the narrower the medullary cavity shape, the smaller the allowable angle of internal recession, and the wider the medullary cavity shape, the wider the allowable range. Long-term follow-up is required in patients with varus angles > 3°.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218374 | PMC |
http://dx.doi.org/10.1186/s13018-024-04856-z | DOI Listing |
ACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies.
View Article and Find Full Text PDFSmall
January 2025
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Artificial Intelligence and Machine Learning, Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India.
The increasing demand for soft robotic systems in agricultural, biomedical and other applications has driven the development of actuators that can mimic the flexibility and adaptability of human muscles. Several studies have explored the design and implementation of soft actuators for robotic applications, however, there is a need for soft actuators demonstrating delicate gripping capabilities but also excel in specific biomedical applications, such as therapeutic massaging. The objective of this work is to develop a multi-finger soft pneumatic actuator mimicking human fingers for Ayurvedic therapeutic massaging and gripping applications.
View Article and Find Full Text PDFJPRAS Open
March 2025
Plastic and Reconstructive Surgery Department, Alfred Health.
The design and implementation of successful rotational flaps of the scalp remains a complex process. There are several described techniques, all of which are based on a two-dimension surface, absent consideration of the convexity, and thereby three-dimensional nature of the scalp. This has contributed to flaps that are either too small or unnecessarily large in a bid to compensate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!