The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3β signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217276 | PMC |
http://dx.doi.org/10.1038/s42003-024-06483-0 | DOI Listing |
Elife
January 2025
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.
View Article and Find Full Text PDFMol Ther
January 2025
Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20, Prague, Czech Republic. Electronic address:
Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233.
The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown.
View Article and Find Full Text PDFToxicol In Vitro
December 2024
Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea. Electronic address:
Methylnissolin-3-O-β-d-glucopyranoside (MNG) and methylnissolin (MN) are pterocarpan derivatives that are found in plants, such as Astragalus membranaceus. There are limited existing studies on the potential health benefits of MNG, and currently there is no evidence to suggest that MNG has any impact on skin-aging. Tumor necrosis factor-alpha (TNF-α) plays a significant role in skin aging by promoting chronic inflammation, damaging skin cells, and impairing the skin's natural repair mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!