AI Article Synopsis

  • * Results show that cognitive impairments in AD mice worsened with CCH but were improved by the autophagy inhibitor 3-methyladenine (3-MA), highlighting the connection between blood flow, autophagy dysfunction, and neuroinflammation.
  • * The research suggests that targeting autophagy might be a promising strategy to reduce neuroinflammation and cognitive decline in Alzheimer's disease, as demonstrated by the effects of 3-MA on microglial polarization and inflammatory markers.

Article Abstract

This study investigates the role of autophagy regulation in modulating neuroinflammation and cognitive function in an Alzheimer's disease (AD) mouse model with chronic cerebral hypoperfusion (CCH). Using the APP23/PS1 mice plus CCH model, we examined the impact of autophagy regulation on cognitive function, neuroinflammation, and autophagic activity. Our results demonstrate significant cognitive impairments in AD mice, exacerbated by CCH, but mitigated by treatment with the autophagy inhibitor 3-methyladenine (3-MA). Dysregulation of autophagy-related proteins, accentuated by CCH, underscores the intricate relationship between cerebral blood flow and autophagy dysfunction in AD pathology. While 3-MA restored autophagic balance, rapamycin (RAPA) treatment did not induce significant changes, suggesting alternative therapeutic approaches are necessary. Dysregulated microglial polarization and neuroinflammation in AD+CCH were linked to cognitive decline, with 3-MA attenuating neuroinflammation. Furthermore, alterations in M2 microglial polarization and the levels of inflammatory markers NLRP3 and MCP1 were observed, with 3-MA treatment exhibiting potential anti-inflammatory effects. Our findings shed light on the crosstalk between autophagy and neuroinflammation in AD+CCH and suggest targeting autophagy as a promising strategy for mitigating neuroinflammation and cognitive decline in AD+CCH.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-024-02043-0DOI Listing

Publication Analysis

Top Keywords

autophagy regulation
12
neuroinflammation cognitive
12
cognitive decline
12
alzheimer's disease
8
disease mouse
8
mouse model
8
model chronic
8
chronic cerebral
8
cerebral hypoperfusion
8
cognitive function
8

Similar Publications

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!