Kinetic model-informed deep learning for multiplexed PET image separation.

EJNMMI Phys

School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Published: July 2024

AI Article Synopsis

Article Abstract

Background: Multiplexed positron emission tomography (mPET) imaging can measure physiological and pathological information from different tracers simultaneously in a single scan. Separation of the multiplexed PET signals within a single PET scan is challenging due to the fact that each tracer gives rise to indistinguishable 511 keV photon pairs, and thus no unique energy information for differentiating the source of each photon pair.

Methods: Recently, many applications of deep learning for mPET image separation have been concentrated on pure data-driven methods, e.g., training a neural network to separate mPET images into single-tracer dynamic/static images. These methods use over-parameterized networks with only a very weak inductive prior. In this work, we improve the inductive prior of the deep network by incorporating a general kinetic model based on spectral analysis. The model is incorporated, along with deep networks, into an unrolled image-space version of an iterative fully 4D PET reconstruction algorithm.

Results: The performance of the proposed method was evaluated on a simulated brain image dataset for dual-tracer [ F]FDG+[ C]MET PET image separation. The results demonstrate that the proposed method can achieve separation performance comparable to that obtained with single-tracer imaging. In addition, the proposed method outperformed the model-based separation methods (the conventional voxel-wise multi-tracer compartment modeling method (v-MTCM) and the image-space dual-tracer version of the fully 4D PET image reconstruction algorithm (IS-F4D)), as well as a pure data-driven separation [using a convolutional encoder-decoder (CED)], with fewer training examples.

Conclusions: This work proposes a kinetic model-informed unrolled deep learning method for mPET image separation. In simulation studies, the method proved able to outperform both the conventional v-MTCM method and a pure data-driven CED with less training data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555001PMC
http://dx.doi.org/10.1186/s40658-024-00660-0DOI Listing

Publication Analysis

Top Keywords

image separation
16
deep learning
12
pet image
12
pure data-driven
12
proposed method
12
kinetic model-informed
8
multiplexed pet
8
separation
8
mpet image
8
inductive prior
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!