Legume symbiotic nitrogen fixation (SNF) is suppressed by inorganic nitrogen (N) in the soil. High N inhibition of nitrogenase activity is associated with the deprivation of carbon allocation and metabolism in nodules. However, the underlying molecular mechanisms remain unclear. Here, we identify GmCIN1, which encodes a cytosolic invertase, as a gateway for the N-tuning of sucrose utilization in nodules. GmCIN1 is enriched in mature soybean nodules, and its expression is regulated by nitrogen status. The knockout of GmCIN1 using genome editing partially mimics the inhibitory effects of N on nitrogenase activity and sugar content and the impact of high N on nodule transcriptomes. This indicates that GmCIN1 partially mediates the high N inhibition of nodule activity. Moreover, ChIP-qPCR and EMSA reveal that SNAP1/2 transcription factors directly bind to the GmCIN1 promoter. In addition, SNAP1/2 may be involved in the repression of GmCIN1 expression in mature nodules at high N concentrations. Our findings provide insights into the involvement of the transcriptional tuning of carbon (C) metabolism genes by N-signaling modulators in the N-induced inhibition of nitrogenase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgg.2024.06.013 | DOI Listing |
Trends Biotechnol
January 2025
College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1.
View Article and Find Full Text PDFJ Gen Appl Microbiol
January 2025
Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo.
We previously constructed an Escherichia coli strain expressing 16 nitrogen fixation (nif) and 2 nif-related genes from Azotobacter vinelandii and improved nitrogenase activity to some extent by enhancing NifH-related functions. In the present study, we analyzed the formation of dinitrogenase, a heterotetrameric NifDK, produced in E. coli, using gel-filtration chromatography and blue native PAGE to gain insight into further increases in nitrogenase activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
In this study, dual-root soybean ( L. Merr.) plants, with one side nodulated and the other nonnodulated, were used as experimental materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!