Delivery of minoxidil encapsulated in cyclodextrins with photoacoustic waves enhances hair growth.

Eur J Pharm Biopharm

CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga 2, 3004-535 Coimbra, Portugal; LaserLeap Technologies, Rua Coronel Júlio Veiga Simão, CTCV Edifício B, 3025-307 Coimbra, Portugal. Electronic address:

Published: September 2024

The current pharmacological management of androgenetic alopecia is inconvenient and requires a discipline that patients find difficult to follow. This reduces compliance with treatment and satisfaction with results. It is important to propose treatment regimens that increase patient compliance and reduce adverse effects. This work describes transdermal delivery of minoxidil partially encapsulated in β-cyclodextrin and assisted by photoacoustic waves. Photoacoustic waves transiently increase the permeability of the skin and allow for the delivery of encapsulated minoxidil. A minoxidil gel formulation was developed and the transdermal delivery was studied in vitro in the presence and absence of photoacoustic waves. A 5-min stimulus with photoacoustic waves generated by light-to-pressure transducers increases minoxidil transdermal delivery flux by approximately 3-fold. The flux of a 1% minoxidil formulation promoted by photoacoustic waves is similar to the passive flux of a 2% minoxidil commercial formulation. Release of minoxidil from β-cyclodextrin increases dermal exposure without increasing peak systemic exposure. This promotes hair growth with fewer treatments and reduced adverse effects. In vivo studies using encapsulated minoxidil and photoacoustic waves yielded 86% hair coat recovery (vs. 29% in the control group) and no changes in the blood pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2024.114390DOI Listing

Publication Analysis

Top Keywords

photoacoustic waves
28
transdermal delivery
12
delivery minoxidil
8
hair growth
8
adverse effects
8
minoxidil
8
encapsulated minoxidil
8
flux minoxidil
8
photoacoustic
7
waves
7

Similar Publications

Recently, Organ-on-a-Chip (OoC) platforms have arisen as an increasingly relevant experimental tool for successfully replicating human physiology and disease. However, there is a lack of a standard technology to monitor the OoC parameters, especially in a non-invasive and label-free way. Photoacoustic (PA) systems can be considered an alternative and accurate assessment method for OoC platforms.

View Article and Find Full Text PDF

Sensitive detection of incident acoustic waves over a broad frequency band offers a faithful representation of photoacoustic pressure transients of biological microstructures. Here, we propose a plasmon waveguide resonance sensor for responding to the photoacoustic impulses. By sequentially depositing Au, MgF, and SiO films on a coverslip, a composite waveguide layer produces a tightly confined optical evanescent field at the SiO-water interface with extremely strong electric field intensity, enabling the retrieval of photoacoustic signals with an estimated noise-equivalent-pressure (NEP) sensitivity of ∼92 Pa and a -6-dB bandwidth of ∼208 MHz.

View Article and Find Full Text PDF

In vivo, molecular imaging is prevalent for biology research and therapeutic practice. Among advanced imaging technologies, photoacoustic (PA) imaging and sensing is gaining interest around the globe due its exciting features like high resolution and good (~ few cm) penetration depth. PA imaging is a recent development in ultrasonic technology that generates acoustic waves by absorbing optical energy.

View Article and Find Full Text PDF

Cantilever-enhanced dual-comb photoacoustic spectroscopy.

Photoacoustics

August 2024

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China.

Dual-comb photoacoustic spectroscopy (DC-PAS) advances spectral measurements by offering high-sensitivity and compact size in a wavelength-independent manner. Here, we present a novel cantilever-enhanced DC-PAS scheme, employing a high-sensitivity fiber-optic acoustic sensor based on an optical cantilever and a non-resonant photoacoustic cell (PAC) featuring a flat-response characteristic. The dual comb is down-converted to the audio frequency range, and the resulting multiheterodyne sound waves from the photoacoustic effect, are mapped into the response frequency region of the optical cantilever microphone.

View Article and Find Full Text PDF

Strain-induced variation of the refractive index is the main mechanism of strain detection in photoacoustic experiments. However, weak strain-optic coupling in many materials limits the application of photoacoustics as an imaging tool. A straightforward deposition of a transparent thin film as a top layer has previously been shown to provide signal enhancement due to elastic boundary effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!