The cornel Iridoid glycoside attenuated brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized aquaporin 4.

Fitoterapia

Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province 710069, PR China. Electronic address:

Published: September 2024

Brain edema after ischemic stroke could worsen cerebral injury in patients who received intravenous thrombolysis. Cornus officinalis Sieb. et Zucc., a long-established traditional Chinese medicine, is beneficial to the treatment of neurodegenerative diseases including ischemic stroke. In particular, its major component, cornel iridoid glycoside (CIG), was evidenced to exhibit neuroprotective effects against cerebral ischemic/reperfusion injury (CIR/I). Aimed to explore the effects of the CIG on brain edema of the CIR/I rats, the CIG was analyzed with the main constituents by using HPLC. The molecular docking analysis was performed between the CIG constituents and AQP4-M23. TGN-020, an AQP4 inhibitor, was used as a comparison. In the in vivo experiments, the rats were pre-treated with the CIG and were injured by performing middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, the rats were examined for neurological function, pathological changes, brain edema, and polarized Aqp4 expressions in the brain. The HPLC analysis indicated that the CIG was composed of morroniside and loganin. The molecular docking analysis showed that both morroniside and loganin displayed lower binding energies to AQP4-M23 than TGN-020. The CIG pre-treated rats exhibited fewer neurological function deficits, minimized brain swelling, and reduced lesion volumes compared to the MCAO/R rats. In the peri-infarct and infarct regions, the CIG pre-treatment restored the polarized Aqp4 expression which was lost in the MCAO/R rats. The results suggested that the CIG could attenuate brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized Aqp4 through the interaction of AQP4-M23 with morroniside and loganin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2024.106098DOI Listing

Publication Analysis

Top Keywords

brain edema
20
polarized aqp4
12
morroniside loganin
12
cig
9
cornel iridoid
8
iridoid glycoside
8
edema cerebral
8
cerebral ischemia/reperfusion
8
rats
8
ischemia/reperfusion rats
8

Similar Publications

Bioactive Materials Facilitate the Restoration of Neurological Function Post Cerebral Ischemic Stroke.

Int J Nanomedicine

January 2025

Department of Neurology, Neurology Specialist Hospital, The First Hospital of Jilin University, Jilin University, Changchun, People's Republic of China.

The recovery process following ischemic stroke is a complex undertaking involving intricate cellular and molecular interactions. Cellular dysfunction or aberrant pathways can lead to complications such as brain edema, hemorrhagic transformation, and glial scar hyperplasia, hindering angiogenesis and nerve regeneration. These abnormalities may contribute to long-term disability post-stroke, imposing significant burdens on both families and society.

View Article and Find Full Text PDF

VASARI 2.0: a new updated MRI VASARI lexicon to predict grading and status in brain glioma.

Front Oncol

December 2024

NeuroRadiology Unit, Ospedale del Mare, Azienda Sanitaria Locale Napoli 1 Centro (ASL NA1 Centro), Naples, Italy.

Introduction: Precision medicine refers to managing brain tumors according to each patient's unique characteristics when it was realized that patients with the same type of tumor differ greatly in terms of survival, responsiveness to treatment, and toxicity of medication. Precision diagnostics can now be advanced through the establishment of imaging biomarkers, which necessitates quantitative image acquisition and processing. The VASARI (Visually AcceSAble Rembrandt Images) manual annotation methodology is an ideal and suitable way to determine the accurate association between genotype and imaging phenotype.

View Article and Find Full Text PDF

Rho-associated protein kinase (ROCK) inhibitors are therapeutic candidates in ischemic stroke and subarachnoid hemorrhage. However, their efficacy in intracerebral hemorrhage (ICH) is unknown. Here, we tested the efficacy of fasudil (10 mg/kg), an isoform-nonselective ROCK inhibitor, and NRL-1049 (10 mg/kg), a novel inhibitor with 43-fold higher selectivity for ROCK2 isoform compared with ROCK1, in a collagenase-induced ICH model in mice.

View Article and Find Full Text PDF

Habitat-based MRI radiomics to predict the origin of brain metastasis.

Med Phys

January 2025

Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.

Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).

Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.

Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions.

View Article and Find Full Text PDF

Unlabelled: The most frequent cause of nephritic syndrome in the pediatric population is acute post-infectious glomerulonephritis (PIGN). A rare complication is posterior reversible encephalopathy syndrome (PRES), characterized by subcortical vasogenic cerebral edema associated with variable neurological symptoms. The development of autoimmune hemolytic anemia is an atypical clinical presentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!